산술 수열에서 n개의 숫자를 찾는 공식입니다. 산술 진행

조리법 14.10.2019
조리법

숫자 시퀀스의 개념은 각 자연수가 일부 실수 값에 해당함을 의미합니다. 이러한 일련의 숫자는 임의적이거나 특정 속성(진행)을 가질 수 있습니다. 안에 후자의 경우시퀀스의 각 후속 요소(멤버)는 이전 요소를 사용하여 계산할 수 있습니다.

산술 진행– 인접한 멤버가 동일한 숫자로 서로 다른 일련의 숫자 값(두 번째부터 시작하는 시리즈의 모든 요소는 유사한 속성을 갖습니다). 이 숫자(이전 용어와 후속 용어의 차이)는 일정하며 진행 차이라고 합니다.

진행 차이: 정의

j 값 A = a(1), a(2), a(3), a(4) ... a(j)로 구성된 시퀀스를 고려하면 j는 자연수 집합 N에 속합니다. 진행은 정의에 따르면 수열입니다. 여기서 a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. d 값은 이 수열에서 원하는 차이입니다.

d = a(j) – a(j-1).

가장 밝은 부분:

  • 증가하는 진행. 이 경우 d > 0. 예: 4, 8, 12, 16, 20, ...
  • 진행을 감소시킨 다음 d< 0. Пример: 18, 13, 8, 3, -2, …

차이 진행 및 임의 요소

수열의 2개의 임의 항이 알려진 경우(i번째, k번째), 주어진 수열의 차이는 다음 관계에 따라 결정될 수 있습니다.

a(i) = a(k) + (i – k)*d, 이는 d = (a(i) – a(k))/(i-k)를 의미합니다.

진행의 차이와 첫 번째 용어

이 표현식은 시퀀스 요소의 번호가 알려진 경우에만 알 수 없는 값을 결정하는 데 도움이 됩니다.

진행차이와 그 합

진행의 합은 해당 기간의 합입니다. 첫 번째 j개 요소의 총 값을 계산하려면 적절한 공식을 사용하세요.

S(j) =((a(1) + a(j))/2)*j, 그러나 이후 a(j) = a(1) + d(j – 1), 그러면 S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

공식의 주요 본질은 무엇입니까?

이 공식을 사용하면 다음을 찾을 수 있습니다. 어느 그의 번호로 " N" .

물론 첫 번째 용어도 알아야합니다. 1그리고 진행 차이 , 음, 이러한 매개변수가 없으면 특정 진행 상황을 기록할 수 없습니다.

이 공식을 암기하는 것(또는 암기하는 것)만으로는 충분하지 않습니다. 그 본질을 이해하고 다양한 문제에 공식을 적용해야 합니다. 그리고 적절한 순간에 잊지 말아야 할 것도 있습니다. 예...) 어떻게 잊지 마세요- 모르겠습니다. 그리고 여기 기억하는 방법필요한 경우 반드시 조언해 드리겠습니다. 레슨을 끝까지 완수하신 분들을 위해.)

그럼, 산술수열의 n번째 항에 대한 공식을 살펴보겠습니다.

일반적으로 공식이란 무엇입니까? 그건 그렇고, 아직 읽지 않았다면 살펴보십시오. 모든 것이 간단합니다. 그것이 무엇인지 알아내는 것이 남아 있습니다. n번째 학기.

진행 상황 일반적인 견해일련의 숫자로 쓸 수 있습니다.

1, 2, 3, 4, 5, .....

1- 산술 수열의 첫 번째 항을 나타냅니다. 3- 세 번째 멤버 4- 네 번째 등등. 5번째 학기에 관심이 있다면, 5, 백이십일 경우 - s 120.

일반적인 용어로 어떻게 정의할 수 있나요? 어느산술 진행의 용어, 어느숫자? 매우 간단합니다! 이와 같이:

그게 바로 그거야 산술수열의 n번째 항.문자 n은 모든 회원 번호(1, 2, 3, 4 등)를 한 번에 숨깁니다.

그리고 그러한 기록은 우리에게 무엇을 제공하는가? 숫자 대신에 편지를 썼다고 생각해보세요...

이 표기법은 산술 진행 작업을 위한 강력한 도구를 제공합니다. 표기법 사용 , 우리는 빨리 찾을 수 있습니다 어느회원 어느산술 진행. 그리고 다른 진행 문제도 해결하세요. 당신은 더 자세히 알게 될 것입니다.

산술수열의 n번째 항에 대한 공식에서:

n = a 1 + (n-1)d

1- 산술 수열의 첫 번째 항;

N- 회원번호.

공식은 모든 진행의 주요 매개변수를 연결합니다. 앤 ; 1 ; 디그리고 N. 모든 진행 문제는 이러한 매개변수를 중심으로 이루어집니다.

n 번째 용어 공식은 특정 진행을 작성하는 데에도 사용할 수 있습니다. 예를 들어, 문제는 진행이 다음 조건에 의해 지정된다고 말할 수 있습니다.

n = 5 + (n-1) 2.

그런 문제는 막다른 골목이 될 수도 있다... 계열도 없고 차이도 없다... 하지만 조건을 공식과 비교해보면 이 수열에서는 이해하기 쉽다. a1 =5, d=2.

그리고 상황은 더욱 악화될 수 있습니다!) 동일한 조건을 적용하면 다음과 같습니다. n = 5 + (n-1) 2,네, 괄호를 열고 비슷한 괄호를 가져오시겠어요? 우리는 새로운 공식을 얻습니다.

n = 3 + 2n.

이것 일반적인 것이 아니라 특정 진행을 위한 것입니다. 여기에 함정이 숨어있습니다. 어떤 사람들은 첫 번째 용어가 3이라고 생각합니다. 실제로 첫 번째 항은 5개이지만... 조금 더 낮은 수준에서 우리는 이러한 수정된 공식을 사용하여 작업할 것입니다.

진행 문제에는 또 다른 표기법이 있습니다. n+1. 이것은 추측한 대로 진행의 "n 더하기 첫 번째" 항입니다. 그 의미는 간단하고 무해합니다.) 이것은 숫자 n보다 1만큼 큰 수열의 구성원입니다. 예를 들어, 어떤 문제에 직면하면 그럼 5학기 n+1여섯번째 멤버가 됩니다. 등.

지정하는 경우가 가장 많습니다. n+1반복 수식에서 찾을 수 있습니다. 무서운 단어이니 겁먹지 마세요!) 이것은 단지 수열의 멤버를 표현하는 방법일 뿐입니다. 이전 것을 통해.반복 공식을 사용하여 다음 형식의 산술 수열이 제공된다고 가정해 보겠습니다.

n+1 = n +3

2 = 1 + 3 = 5+3 = 8

3 = 2 + 3 = 8+3 = 11

네 번째 - 세 번째, 다섯 번째 - 네 번째 등. 예를 들어 20번째 용어를 어떻게 즉시 계산할 수 있습니까? 20? 하지만 방법은 없습니다!) 19번째 용어를 찾을 때까지는 20번째 용어를 셀 수 없습니다. 이것이 반복 공식과 n 번째 항 공식의 근본적인 차이점입니다. 반복 작업을 통해서만 이전의항이고, n번째 항의 공식은 다음과 같습니다. 첫 번째그리고 허용 곧바로번호로 회원을 찾으세요. 전체 숫자 계열을 순서대로 계산하지 않고.

산술 수열에서는 반복 수식을 일반 수식으로 바꾸는 것이 쉽습니다. 연속된 용어 쌍을 세어 차이를 계산합니다. 디,필요한 경우 첫 번째 항을 찾으십시오. 1, 일반적인 형식으로 공식을 작성하고 작업해 보세요. 이러한 작업은 State Academy of Sciences에서 자주 발생합니다.

산술수열의 n번째 항에 대한 공식을 적용합니다.

먼저, 공식의 직접적인 적용을 살펴보겠습니다. 이전 강의 끝에 문제가 있었습니다.

산술급수(an)이 제공됩니다. a 1 =3이고 d=1/6이면 121을 구합니다.

이 문제는 어떤 공식도 없이 단순히 산술수열의 의미를 토대로 풀 수 있습니다. 추가하고 추가하세요... 한두 시간 정도.)

공식에 따르면 솔루션은 1분도 채 걸리지 않습니다. 시간을 정할 수 있습니다.) 결정합시다.

조건은 공식을 사용하기 위한 모든 데이터를 제공합니다. a 1 =3, d=1/6.무엇이 평등한지 알아내는 것이 남아 있습니다 N.괜찮아요! 우리는 찾아야 해요 121. 그래서 우리는 다음과 같이 씁니다:

주의해주세요! 인덱스 대신 N특정 숫자가 나타납니다: 121. 이는 매우 논리적입니다.) 우리는 산술 진행의 구성원에 관심이 있습니다 번호 백이십일.이것은 우리 것이 될 것이다 N.이것이 의미이다 N= 121 우리는 괄호 안에 공식을 추가로 대체하겠습니다. 모든 숫자를 공식에 대체하고 계산합니다.

121 = 3 + (121-1) 1/6 = 3+20 = 23

그게 다야. 마찬가지로 빨리 오백십번째 용어와 천삼번째 용어를 찾을 수 있습니다. 우리는 대신 넣어 N문자 색인에서 원하는 숫자 " ㅏ"괄호 안에는 숫자가 포함됩니다.

요점을 상기시켜 드리겠습니다. 이 공식을 사용하면 다음을 찾을 수 있습니다. 어느산술진행항 그의 번호로 " N" .

좀 더 교활한 방법으로 문제를 해결해 봅시다. 다음 문제를 살펴보겠습니다.

a 17 =-2인 경우 등차수열의 첫 번째 항(an)을 찾습니다. d=-0.5.

어려움이 있으시면 첫 번째 단계를 알려 드리겠습니다. 산술수열의 n번째 항의 공식을 적어보세요!예 예. 노트에 바로 손으로 적어보세요.

n = a 1 + (n-1)d

이제 공식의 글자를 보면 우리가 가지고 있는 데이터와 누락된 데이터가 무엇인지 이해하게 됩니까? 사용 가능 d=-0.5,열일곱 번째 멤버가 있는데... 그게 다야? 그렇게 생각하면 문제가 해결되지 않을 거에요, 그렇죠…

아직 전화번호가 있어요 N! 상태 17 =-2숨겨진 두 개의 매개변수.이는 17번째 항(-2)의 값이자 해당 숫자(17)입니다. 저것들. n=17.이 "사소한 일"은 종종 머리를 지나쳐 지나가고, 그것 없이는(머리가 아닌 "사소한 일" 없이!) 문제를 해결할 수 없습니다. 하지만...그리고 머리도 없습니다.)

이제 우리는 데이터를 공식에 어리석게 대체할 수 있습니다.

17 = 1 + (17-1)·(-0.5)

바로 이거 야, 17우리는 그것이 -2라는 것을 압니다. 좋습니다. 다음과 같이 바꾸겠습니다.

-2 = 1 + (17-1)·(-0.5)

기본적으로 그게 전부입니다. 공식에서 산술 진행의 첫 번째 항을 표현하고 계산하는 것이 남아 있습니다. 대답은 다음과 같습니다: 1 = 6.

공식을 작성하고 알려진 데이터를 간단히 대체하는 이 기술은 간단한 작업에 큰 도움이 됩니다. 물론, 수식으로 변수를 표현할 수 있어야 하는데 어떡하지!? 이 기술이 없으면 수학은 전혀 공부할 수 없습니다...

또 다른 인기 퍼즐:

a 1 =2인 경우 산술급수(an)의 차이를 구합니다. 15 = 12.

우리는 무엇을하고 있습니까? 당신은 놀랄 것입니다. 우리는 공식을 작성하고 있습니다!)

n = a 1 + (n-1)d

우리가 알고 있는 것을 생각해 봅시다: a1=2; 15=12; 그리고 (특히 강조하겠습니다!) n=15. 이것을 공식으로 대체해 보세요:

12=2 + (15-1)d

우리는 계산을 합니다.)

12=2 + 14일

=10/14 = 5/7

이것이 정답입니다.

그래서, 앤, 에이 1그리고 결정했다. 남은 것은 숫자를 찾는 방법을 배우는 것입니다.

숫자 99는 산술급수(an)의 구성원입니다. 여기서 a 1은 12입니다. d=3. 이 회원의 번호를 찾아보세요.

우리에게 알려진 양을 n번째 항의 공식으로 대체합니다.

n = 12 + (n-1) 3

언뜻 보면 여기에는 알 수 없는 두 가지 수량이 있습니다. n과 n.하지만 - 이것은 숫자가 있는 진행의 일부 멤버입니다. N...그리고 우리는 이 발전 멤버를 알고 있습니다! 99입니다. 우리는 그 숫자를 모릅니다. N,그래서 이 숫자를 찾아야 합니다. 우리는 진행 99의 용어를 공식으로 대체합니다.

99 = 12 + (n-1) 3

우리는 공식으로 표현합니다. N, 우리는 생각한다. 우리는 답을 얻습니다: n=30.

이제 동일한 주제에 대한 문제가 발생했지만 더 창의적인 문제가 발생했습니다.

숫자 117이 등차수열(an)의 구성원인지 확인합니다.

-3,6; -2,4; -1,2 ...

수식을 다시 작성해 보겠습니다. 매개변수가 없나요? 흠... 눈은 왜 주나요?) 진행의 첫 번째 항이 보이나요? 우리는보다. 이것은 -3.6입니다. 다음과 같이 안전하게 작성할 수 있습니다. a1 = -3.6.차이점 시리즈를 통해 알 수 있나요? 산술 진행의 차이점이 무엇인지 알면 쉽습니다.

d = -2.4 - (-3.6) = 1.2

그래서 우리는 가장 간단한 일을 했습니다. 알 수 없는 번호를 처리하는 것이 남아 있습니다. N그리고 이해할 수 없는 숫자 117. 이전 문제에서는 적어도 주어진 수열의 용어인 것으로 알려졌습니다. 그런데 여기서 우리는 아무것도 모릅니다... 어떡하지!? 자, 어떡해 어떡해... 켜 창의적인 기술!)

우리 가정하다결국 117은 우리 발전의 구성원입니다. 알 수 없는 번호로 N. 그리고 이전 문제와 마찬가지로 이 숫자를 찾아보도록 하겠습니다. 저것들. 공식을 작성하고(예, 예!) 숫자를 대체합니다.

117 = -3.6 + (n-1) 1.2

다시 우리는 공식으로 표현합니다N, 우리는 계산하고 얻습니다:

이런! 숫자가 나왔다 분수! 115. 그리고 진행의 분수 수 없습니다.우리는 어떤 결론을 내릴 수 있습니까? 예! 117호 아니다우리 진행의 멤버입니다. 그것은 백일차와 백두번째 용어 사이 어딘가에 있습니다. 숫자가 자연스러워진 경우, 즉 양의 정수이면 그 숫자는 발견된 숫자와 함께 진행의 구성원이 됩니다. 그리고 우리의 경우 문제에 대한 답은 다음과 같습니다. 아니요.

GIA의 실제 버전을 기반으로 한 작업:

산술적 진행은 다음 조건에 따라 제공됩니다.

n = -4 + 6.8n

수열의 첫 번째 항과 열 번째 항을 찾습니다.

여기서 진행은 특이한 방식으로 설정됩니다. 일종의 공식... 그런 일이 발생합니다.) 그러나 이 공식은 (위에 쓴 대로) - 또한 산술수열의 n번째 항에 대한 공식도요!그녀는 또한 허용 해당 번호로 진행의 구성원을 찾습니다.

첫 번째 멤버를 찾고 있습니다. 생각하는 사람. 첫 번째 항이 마이너스 4라는 것은 치명적인 착각입니다!) 문제의 공식이 수정되었기 때문입니다. 그것의 산술 진행의 첫 번째 항 숨겨진.괜찮습니다. 지금 찾아보겠습니다.)

이전 문제와 마찬가지로 대체합니다. n=1이 공식에:

1 = -4 + 6.8 1 = 2.8

여기! 첫 번째 항은 -4가 아니라 2.8입니다!

같은 방식으로 열 번째 용어를 찾습니다.

10 = -4 + 6.8 10 = 64

그게 다야.

그리고 이제 이 글을 읽으신 분들에게는 약속된 보너스가 주어졌습니다.)

어려운 전투 상황, 국가 시험 또는 통합 국가 시험에서 잊어 버렸다고 가정하십시오. 유용한 공식산술수열의 n번째 항. 뭔가 기억나는데 뭔가 불확실한데... 아니면 N거기 아니면 n+1 또는 n-1...어때요!?

침착한! 이 공식은 도출하기 쉽습니다. 아주 엄격하지는 않지만 자신감과 올바른 결정을 내리기 위해서는 확실히 충분합니다!) 결론을 내리려면 산술 수열의 기본 의미를 기억하고 몇 분의 시간을 갖는 것으로 충분합니다. 그림만 그리시면 됩니다. 명확성을 위해.

수직선을 그리고 그 위에 첫 번째 선을 표시하세요. 두 번째, 세 번째 등등 회원. 그리고 우리는 차이점을 주목합니다 회원간. 이와 같이:

우리는 그림을 보고 다음과 같이 생각합니다. 두 번째 용어는 무엇입니까? 두번째 하나 :

2 =a 1 + 1

세 번째 용어는 무엇입니까? 제삼항은 첫 번째 항에 더하기 .

3 =a 1 + 2

알아 들었 니? 일부 단어를 굵게 강조한 것은 아무것도 아닙니다. 좋아, 한 단계 더).

네 번째 용어는 무엇입니까? 네번째항은 첫 번째 항에 더하기 .

4 =a 1 + 3

이제 간격의 수, 즉 , 언제나 찾고 있는 회원 수보다 한 명 적습니다. N. 즉, 숫자에 n, 공백 수~ 할 것이다 n-1.따라서 공식은 다음과 같습니다(변형 없음!).

n = a 1 + (n-1)d

일반적으로 시각적 그림은 수학의 많은 문제를 해결하는 데 매우 도움이 됩니다. 사진을 무시하지 마십시오. 하지만 그림을 그리는 것이 어렵다면... 공식만 있으면 됩니다!) 또한 n번째 항의 공식을 사용하면 수학의 강력한 무기고 전체를 방정식, 부등식, 시스템 등의 솔루션에 연결할 수 있습니다. 방정식에 그림을 삽입할 수 없습니다...

독립적인 솔루션을 위한 작업입니다.

따뜻하게:

1. 산술수열(an)에서 a 2 =3; a5=5.1. 3 을 찾으세요.

힌트: 그림에 따르면 문제는 20초 안에 풀 수 있습니다... 공식에 따르면 문제는 더 어려워집니다. 하지만 공식을 익히려면 더 유용합니다.) 555절에서는 그림과 공식을 모두 사용하여 이 문제를 해결합니다. 차이를 느껴봐!)

그리고 이것은 더 이상 워밍업이 아닙니다.)

2. 산술수열(an)에서 a 85 =19.1; a 236 =49, 3. 3 을 구하세요.

뭐, 그림 그리기 싫은 거야?) 물론이지! 공식에 따르면 더 낫습니다. 예..

3. 산술적 진행은 다음 조건에 따라 제공됩니다.a1 = -5.5; n+1 = n +0.5. 이 수열의 125번째 항을 구하십시오.

이 작업에서는 진행이 반복적인 방식으로 지정됩니다. 하지만 125 번째 학기까지 세면... 모든 사람이 그런 위업을 할 수 있는 것은 아닙니다.) 그러나 n 번째 학기의 공식은 모든 사람의 힘 안에 있습니다!

4. 산술수열(an)이 주어지면:

-148; -143,8; -139,6; -135,4, .....

진행의 가장 작은 양수 항의 수를 찾습니다.

5. 과제 4의 조건에 따라 진행의 최소 양수 항과 최대 음수 항의 합을 구합니다.

6. 증가하는 산술 수열의 다섯 번째 항과 열두 번째 항의 곱은 -2.5이고 세 번째 항과 열한 번째 항의 합은 0입니다. 14 를 찾으세요.

가장 쉬운 작업은 아닙니다. 그렇습니다...) 여기서는 "손가락 끝" 방법이 작동하지 않습니다. 공식을 작성하고 방정식을 풀어야 합니다.

답변(혼란):

3,7; 3,5; 2,2; 37; 2,7; 56,5

일어난? 좋네요!)

모든 것이 잘 되지는 않나요? 일어난다. 그런데 마지막 작업에는 미묘한 점이 하나 있습니다. 문제를 읽을 때 주의가 필요합니다. 그리고 논리.

이러한 모든 문제에 대한 해결책은 섹션 555에서 자세히 논의됩니다. 그리고 네 번째에 대한 환상의 요소, 여섯 번째에 대한 미묘한 요점, n 번째 항의 공식과 관련된 문제를 해결하기 위한 일반적인 접근 방식-모든 것이 설명됩니다. 추천합니다.

이 사이트가 마음에 드신다면...

그건 그렇고, 당신을 위한 몇 가지 흥미로운 사이트가 더 있습니다.)

예제 풀이를 연습하고 자신의 레벨을 알아볼 수 있습니다. 즉시 검증으로 테스트합니다. 배우자 - 관심을 가지고!)

함수와 파생물에 대해 알아볼 수 있습니다.


예, 예: 산술 진행은 장난감이 아닙니다 :)

글쎄, 친구들, 만약 당신이 이 글을 읽고 있다면, 내부 상한 증거는 당신이 산술 진행이 무엇인지 아직 모르지만 당신은 정말로 (아니, 그렇게: SOOOOO!) 알고 싶어한다는 것을 말해줍니다. 그러므로 긴 서론으로 여러분을 괴롭히지 않고 바로 본론으로 들어가겠습니다.

첫째, 몇 가지 예입니다. 여러 숫자 세트를 살펴보겠습니다.

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

이 세트의 공통점은 무엇입니까? 언뜻보기에는 아무것도 아닙니다. 그런데 사실 뭔가가 있어요. 즉: 각각의 다음 요소는 이전 요소와 동일한 숫자만큼 다릅니다..

스스로 판단하십시오. 첫 번째 세트는 단순히 연속된 숫자이며, 다음 숫자는 이전 숫자보다 1 더 많습니다. 두 번째 경우에는 인접한 숫자의 차이가 이미 5이지만 이 차이는 여전히 일정합니다. 세 번째 경우에는 뿌리가 모두 있습니다. 그러나 $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ 및 $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, 즉 이 경우 각 다음 요소는 단순히 $\sqrt(2)$만큼 증가합니다(그리고 이 숫자가 비합리적이라는 것을 두려워하지 마십시오).

따라서 이러한 모든 시퀀스를 산술 진행이라고 합니다. 엄격한 정의를 내려 보겠습니다.

정의. 다음 숫자가 이전 숫자와 정확히 같은 양만큼 다른 일련의 숫자를 산술 수열이라고 합니다. 숫자가 서로 다른 정도를 진행 차이라고 하며 문자 $d$로 표시하는 경우가 가장 많습니다.

표기법: $\left(((a)_(n)) \right)$는 진행 자체이고, $d$는 그 차이입니다.

그리고 몇 가지 중요한 참고 사항이 있습니다. 첫째, 진행 상황만 고려됩니다. 주문하다숫자의 순서: 쓰여진 순서대로 엄격하게 읽을 수 있으며 그 외에는 아무것도 읽을 수 없습니다. 번호는 재배열되거나 교체될 수 없습니다.

둘째, 수열 자체는 유한할 수도 있고 무한할 수도 있습니다. 예를 들어, 집합 (1; 2; 3)은 분명히 유한 산술 수열입니다. 그러나 정신으로 무언가를 쓰면 (1; 2; 3; 4; ...) - 이것은 이미 무한한 진행입니다. 4개 뒤의 줄임표는 앞으로 더 많은 숫자가 나올 것임을 암시하는 것 같습니다. 예를 들어 무한히 많습니다. :)

또한 진행 상황이 증가하거나 감소할 수 있다는 점에 주목하고 싶습니다. 우리는 이미 동일한 세트(1; 2; 3; 4; ...)가 증가하는 것을 보았습니다. 다음은 진행 감소의 예입니다.

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

그래 그래: 마지막 예지나치게 복잡해 보일 수도 있습니다. 하지만 나머지는 이해하실 것 같아요. 따라서 새로운 정의를 소개합니다.

정의. 산술 진행을 다음과 같이 부릅니다.

  1. 각 다음 요소가 이전 요소보다 크면 증가합니다.
  2. 반대로, 각 후속 요소가 이전 요소보다 작으면 감소합니다.

또한 동일한 반복 번호로 구성된 소위 "고정" 시퀀스도 있습니다. 예를 들어 (3; 3; 3; ...)입니다.

남은 질문은 하나뿐입니다. 증가하는 진행과 감소하는 진행을 어떻게 구별할 수 있을까요? 다행히도 여기에 있는 모든 것은 숫자 $d$의 부호에만 의존합니다. 진행 차이:

  1. $d \gt 0$이면 진행률이 증가합니다.
  2. $d \lt 0$이면 진행이 확실히 감소하고 있습니다.
  3. 마지막으로 $d=0$의 경우가 있습니다. 이 경우 전체 진행이 고정 시퀀스로 축소됩니다. 동일한 숫자: (1; 1; 1; 1; ...) 등

위에 주어진 세 가지 감소 진행에 대한 차이 $d$를 계산해 봅시다. 이렇게 하려면 인접한 두 요소(예: 첫 번째와 두 번째)를 가져와 오른쪽 숫자에서 왼쪽 숫자를 빼면 충분합니다. 다음과 같이 보일 것입니다:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

보시다시피, 세 가지 경우 모두 그 차이는 실제로 음수로 나타났습니다. 이제 정의를 어느 정도 파악했으므로 진행이 어떻게 설명되고 어떤 속성이 있는지 알아낼 차례입니다.

진행 조건 및 반복 공식

시퀀스의 요소는 교체될 수 없으므로 번호를 매길 수 있습니다.

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \오른쪽\)\]

이 세트의 개별 요소를 진행의 구성원이라고 합니다. 첫 번째 멤버, 두 번째 멤버 등 숫자로 표시됩니다.

게다가, 우리가 이미 알고 있듯이, 진행의 이웃 용어는 다음 공식과 관련됩니다:

\[((a)_(n))-((a)_(n-1))=d\오른쪽 화살표 ((a)_(n))=((a)_(n-1))+d \]

간단히 말해서, 수열의 $n$번째 항을 찾으려면 $n-1$번째 항과 차이 $d$를 알아야 합니다. 이 공식을 반복이라고 합니다. 이 공식을 사용하면 이전 공식(및 실제로 모든 이전 공식)을 알아야만 숫자를 찾을 수 있기 때문입니다. 이는 매우 불편하므로 모든 계산을 첫 번째 항과 차이로 줄이는 더 교묘한 공식이 있습니다.

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

아마 여러분은 이미 이 공식을 접한 적이 있을 것입니다. 그들은 모든 종류의 참고 서적과 솔루션 서적에 이를 제공하는 것을 좋아합니다. 그리고 합리적인 수학 교과서에서 그것은 첫 번째 중 하나입니다.

하지만 조금 연습해 보시길 권합니다.

작업 번호 1. $((a)_(1))=8,d=-5$인 경우 산술 수열 $\left(((a)_(n)) \right)$의 처음 세 항을 적으세요.

해결책. 따라서 우리는 첫 번째 항 $((a)_(1))=8$과 수열의 차이 $d=-5$를 알고 있습니다. 방금 주어진 공식을 사용하고 $n=1$, $n=2$ 및 $n=3$을 대체해 보겠습니다.

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 삼; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(정렬)\]

답: (8; 3; −2)

그게 다야! 참고: 진행 상황이 감소하고 있습니다.

물론 $n=1$은 대체될 ​​수 없습니다. 첫 번째 항은 이미 우리에게 알려져 있습니다. 그러나 통일성을 대체함으로써 우리는 첫 번째 항에서도 우리의 공식이 작동한다고 확신했습니다. 다른 경우에는 모든 것이 진부한 산술로 귀결되었습니다.

작업 번호 2. 일곱 번째 항이 -40이고 열일곱 번째 항이 -50인 경우 산술 수열의 처음 세 항을 적습니다.

해결책. 익숙한 용어로 문제 조건을 작성해 보겠습니다.

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \오른쪽.\]

이러한 요구 사항이 동시에 충족되어야 하기 때문에 시스템 기호를 넣었습니다. 이제 두 번째 방정식에서 첫 번째 방정식을 빼면(시스템이 있으므로 이렇게 할 권리가 있습니다) 다음과 같은 결과를 얻습니다.

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(정렬)\]

진행 차이를 찾는 것이 얼마나 쉬운지! 남은 것은 발견된 숫자를 시스템의 방정식에 대체하는 것입니다. 예를 들어 첫 번째에서는 다음과 같습니다.

\[\begin(행렬) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(행렬)\]

이제 첫 번째 항과 차이점을 알았으니 두 번째와 세 번째 항을 찾아야 합니다.

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(정렬)\]

준비가 된! 문제가 해결되었습니다.

답: (−34; −35; −36)

우리가 발견한 진행의 흥미로운 속성에 주목하세요. $n$번째 항과 $m$번째 항을 취하고 서로 빼면 $n-m$ 숫자를 곱한 진행의 차이를 얻습니다.

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

단순하지만 매우 유용한 재산, 반드시 알아야 할 사항 - 도움을 받으면 많은 진행 문제의 해결 속도를 크게 높일 수 있습니다. 이에 대한 명확한 예는 다음과 같습니다.

작업 번호 3. 등차수열의 다섯 번째 항은 8.4이고, 열 번째 항은 14.4입니다. 이 수열의 15번째 항을 찾아보세요.

해결책. $((a)_(5))=8.4$, $((a)_(10))=14.4$이고 $((a)_(15))$를 찾아야 하므로 다음을 참고하세요.

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(정렬)\]

그러나 $((a)_(10))-((a)_(5))=14.4-8.4=6$ 조건에 따라 $5d=6$이므로 다음과 같은 결과를 얻을 수 있습니다.

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(정렬)\]

답: 20.4

그게 다야! 우리는 방정식 시스템을 만들고 첫 번째 항과 차이를 계산할 필요가 없었습니다. 모든 것이 단 몇 줄만으로 해결되었습니다.

이제 다른 유형의 문제를 살펴보겠습니다. 진행의 부정 및 긍정적 용어를 검색하는 것입니다. 진행이 증가하고 첫 번째 용어가 부정적이면 조만간 긍정적인 용어가 나타날 것이라는 것은 비밀이 아닙니다. 그리고 그 반대도 마찬가지입니다. 감소하는 진행 조건은 조만간 음수가 될 것입니다.

동시에 요소를 순차적으로 살펴봄으로써 이 순간을 "정면"으로 찾는 것이 항상 가능한 것은 아닙니다. 종종 문제는 공식을 모르면 계산을 위해 여러 장의 종이가 필요한 방식으로 작성됩니다. 즉, 답을 찾는 동안 잠들기만 하면 됩니다. 그러므로 이러한 문제를 더 빠른 방법으로 해결해 보도록 하겠습니다.

작업 번호 4. 산술 진행에 부정적인 용어가 몇 개 있습니까? -38.5; -35.8; ...?

해결책. 따라서 $((a)_(1))=-38.5$, $((a)_(2))=-35.8$에서 차이점을 즉시 찾을 수 있습니다.

차이가 양수이므로 진행이 증가한다는 점에 유의하세요. 첫 번째 항은 음수이므로 어느 시점에서 우리는 양수를 우연히 발견하게 될 것입니다. 유일한 질문은 이것이 언제 일어날 것인가입니다.

용어의 부정성이 얼마나 오랫동안(즉, 자연수 $n$까지) 남아 있는지 알아 보겠습니다.

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \맞습니다. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(정렬)\]

마지막 줄에는 설명이 필요합니다. 따라서 우리는 $n \lt 15\frac(7)(27)$을 알고 있습니다. 반면에 우리는 숫자의 정수 값(또한: $n\in \mathbb(N)$)에만 만족하므로 허용 가능한 가장 큰 숫자는 정확히 $n=15$이며 어떤 경우에도 16은 아닙니다. .

작업 번호 5. 산술수열에서 $(()_(5))=-150,(()_(6))=-147$. 이 수열의 첫 번째 긍정적 항의 수를 찾으세요.

이는 이전 문제와 정확히 동일한 문제이지만 $((a)_(1))$를 모릅니다. 그러나 이웃 용어는 $((a)_(5))$ 및 $((a)_(6))$로 알려져 있으므로 진행의 차이를 쉽게 찾을 수 있습니다.

또한, 다섯 번째 항을 첫 번째 항과 차이를 통해 표준 공식을 사용하여 표현해 보겠습니다.

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(정렬)\]

이제 이전 작업과 유사하게 진행합니다. 시퀀스의 어느 지점에 양수가 나타날지 알아봅시다.

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\오른쪽 화살표 ((n)_(\min ))=56. \\ \end(정렬)\]

이 부등식에 대한 최소 정수 해는 숫자 56입니다.

참고: 마지막 작업에서 모든 것이 엄격한 불평등으로 귀결되었으므로 $n=55$ 옵션은 우리에게 적합하지 않습니다.

이제 간단한 문제를 해결하는 방법을 배웠으니 더 복잡한 문제로 넘어가겠습니다. 하지만 먼저, 앞으로 많은 시간과 불평등한 셀을 절약해 줄 산술 수열의 또 다른 매우 유용한 속성을 연구해 보겠습니다. :)

산술 평균 및 동일 들여쓰기

증가하는 산술 수열 $\left(((a)_(n)) \right)$의 여러 연속 항을 고려해 봅시다. 수직선에 표시해 봅시다:

수직선에서의 산술수열의 조건

나는 임의의 용어 $((a)_(n-3)),...,((a)_(n+3))$를 구체적으로 표시했지만 일부는 $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ 등 이제 제가 말씀드릴 규칙은 모든 "세그먼트"에 동일하게 적용되기 때문입니다.

그리고 규칙은 매우 간단합니다. 반복되는 공식을 기억하고 표시된 모든 용어에 대해 적어 보겠습니다.

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(정렬)\]

그러나 이러한 동등성은 다르게 다시 작성할 수 있습니다.

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(정렬)\]

그럼 어쩌죠? 그리고 $((a)_(n-1))$ 및 $((a)_(n+1))$ 항이 $((a)_(n)) $에서 같은 거리에 있다는 사실 . 그리고 이 거리는 $d$와 같습니다. $((a)_(n-2))$ 및 $((a)_(n+2))$에 대해서도 마찬가지입니다. $((a)_(n)에서도 제거됩니다. )$는 동일한 거리에서 $2d$와 같습니다. 우리는 무한히 계속할 수 있지만 그 의미는 그림으로 잘 설명됩니다.


진행의 항은 중심으로부터 같은 거리에 있습니다.

이것이 우리에게 무엇을 의미합니까? 이는 이웃 숫자가 알려진 경우 $((a)_(n))$를 찾을 수 있음을 의미합니다.

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

우리는 훌륭한 진술을 도출했습니다: 산술 수열의 모든 항은 이웃 항의 산술 평균과 같습니다! 또한 $((a)_(n))$에서 한 단계가 아니라 $k$ 단계씩 왼쪽과 오른쪽으로 뒤로 물러날 수 있으며 공식은 여전히 ​​정확합니다.

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

저것들. $((a)_(100))$ 및 $((a)_(200))$을 알고 있으면 $((a)_(150))$를 쉽게 찾을 수 있습니다. 왜냐하면 $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. 언뜻 보면 이 사실이 우리에게 유용한 어떤 것도 주지 않는 것처럼 보일 수 있습니다. 그러나 실제로는 산술평균을 사용하도록 특별히 고안된 문제가 많습니다. 구경하다:

작업 번호 6. $-6((x)^(2))$, $x+1$ 및 $14+4((x)^(2))$가 연속되는 $x$의 모든 값을 찾습니다. 산술 수열(표시된 순서대로).

해결책. 이러한 숫자는 수열의 구성원이므로 산술 평균 조건이 충족됩니다. 중심 요소 $x+1$는 이웃 요소로 표현될 수 있습니다.

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(정렬)\]

클래식하게 나왔어요 이차 방정식. 그 뿌리는 $x=2$ 및 $x=-3$ 입니다.

답: -3; 2.

작업 번호 7. 숫자 $-1;4-3;(()^(2))+1$가 산술급수를 이루는 $$의 값을 (순서대로) 찾아보세요.

해결책. 다시 이웃항의 산술평균을 통해 중간항을 표현해 보겠습니다.

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \오른쪽.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(정렬)\]

다시 이차 방정식. 그리고 다시 두 개의 루트가 있습니다: $x=6$ 및 $x=1$.

답: 1; 6.

문제를 해결하는 과정에서 잔인한 숫자가 나오거나 찾은 답변의 정확성을 완전히 확신할 수 없는 경우 다음을 확인할 수 있는 훌륭한 기술이 있습니다. 문제를 올바르게 해결했나요?

6번 문제에서 -3과 2의 답을 받았다고 가정해 보겠습니다. 이 답이 맞는지 어떻게 확인할 수 있나요? 그냥 원래 상태에 연결하고 무슨 일이 일어나는지 살펴보겠습니다. 산술 수열을 형성해야 하는 세 개의 숫자($-6(()^(2))$, $+1$ 및 $14+4(()^(2))$)가 있음을 상기시켜 드리겠습니다. $x=-3$을 대체해 보겠습니다.

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \끝(정렬)\]

우리는 숫자 -54를 얻었습니다. -2; 50과 52의 차이는 의심할 여지 없이 산술급수입니다. $x=2$에 대해서도 같은 일이 발생합니다.

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \끝(정렬)\]

다시 진행되지만 차이는 27입니다. 따라서 문제는 올바르게 해결되었습니다. 원하는 분은 두 번째 문제를 직접 확인할 수 있지만 바로 말씀 드리겠습니다. 거기에서도 모든 것이 정확합니다.

일반적으로 마지막 문제를 해결하는 동안 우리는 또 다른 문제를 발견했습니다. 흥미로운 사실, 또한 기억해야 할 사항은 다음과 같습니다.

두 번째 숫자가 첫 번째 숫자와 마지막 숫자의 산술 평균이 되는 세 숫자가 있으면 이 숫자는 산술급수를 형성합니다.

앞으로 이 진술을 이해하면 문제의 조건에 따라 필요한 진행을 문자 그대로 "구축"할 수 있게 될 것입니다. 그러나 그러한 "구성"에 참여하기 전에 우리는 이미 논의된 내용과 직접적으로 이어지는 또 하나의 사실에 주의를 기울여야 합니다.

요소 그룹화 및 합산

다시 숫자 축으로 돌아가 보겠습니다. 아마도 그 사이에 진행 과정의 여러 구성원이 있을 것입니다. 다른 회원들보다 훨씬 가치가 있습니다.

수직선에는 6개의 요소가 표시되어 있습니다.

$((a)_(n))$과 $d$를 통해 “왼쪽 꼬리”를, $((a)_(k))$와 $d$를 통해 “오른쪽 꼬리”를 표현해 보겠습니다. 매우 간단합니다.

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(정렬)\]

이제 다음 금액이 동일하다는 점에 유의하세요.

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= 에스; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= 에스. \끝(정렬)\]

간단히 말해서, 진행의 두 요소를 시작으로 고려하고 총합이 $S$라는 숫자와 동일한 다음 이러한 요소에서 반대 방향으로(서로를 향해 또는 그 반대 방향으로 이동하기 시작하는 경우), 그 다음에 우리가 우연히 발견하게 될 요소들의 합 또한 동일할 것입니다$S$. 이는 그래픽으로 가장 명확하게 표현될 수 있습니다.


동일한 들여쓰기는 동일한 양을 제공합니다.

이해 이 사실위에서 고려한 것보다 근본적으로 더 높은 수준의 복잡성 문제를 해결할 수 있습니다. 예를 들면 다음과 같습니다.

작업 번호 8. 첫 번째 항이 66이고 두 번째 항과 12번째 항의 곱이 가장 작은 수열의 차이를 구합니다.

해결책. 우리가 알고 있는 모든 것을 적어보자:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \끝(정렬)\]

따라서 우리는 진행 차이 $d$를 알 수 없습니다. 실제로 $((a)_(2))\cdot ((a)_(12))$ 제품은 다음과 같이 다시 작성할 수 있으므로 전체 솔루션은 차이점을 중심으로 구축됩니다.

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \왼쪽(d+66 \오른쪽)\cdot \왼쪽(d+6 \오른쪽). \끝(정렬)\]

탱크에 있는 사람들을 위해: 나는 두 번째 브래킷에서 총 승수 11을 가져왔습니다. 따라서 원하는 곱은 변수 $d$에 대한 2차 함수입니다. 따라서 $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ 함수를 생각해 보세요. 그래프는 가지가 위로 올라가는 포물선이 됩니다. 대괄호를 확장하면 다음과 같은 결과를 얻습니다.

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

보시다시피, 가장 높은 항의 계수는 11입니다. 이는 양수이므로 실제로 위쪽 가지가 있는 포물선을 다루고 있습니다.


일정 이차 함수- 포물선

참고: 이 포물선은 가로좌표 $((d)_(0))$가 있는 꼭지점에서 최소값을 취합니다. 물론 표준 체계(공식 $((d)_(0))=(-b)/(2a)\;$)를 사용하여 이 가로좌표를 계산할 수 있지만, 참고하는 것이 훨씬 더 합리적입니다. 원하는 정점이 포물선의 축 대칭에 있으므로 점 $((d)_(0))$는 방정식 $f\left(d \right)=0$의 근에서 등거리에 있습니다.

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(정렬)\]

그렇기 때문에 나는 괄호를 여는 데 특별히 서두르지 않았습니다. 원래 형태에서는 뿌리를 찾기가 매우 매우 쉬웠습니다. 따라서 가로좌표는 숫자 -66과 -6의 산술 평균과 같습니다.

\[((d)_(0))=\frac(-66-6)(2)=-36\]

발견된 숫자는 우리에게 무엇을 제공합니까? 이를 통해 필요한 제품은 가장 작은 값을 갖습니다(그런데 우리는 $((y)_(\min ))$를 계산하지 않았습니다. 이는 우리에게 필요하지 않습니다). 동시에 이 숫자는 원래 진행의 차이입니다. 우리는 답을 찾았습니다. :)

답: −36

작업 번호 9. 숫자 $-\frac(1)(2)$와 $-\frac(1)(6)$ 사이에 세 개의 숫자를 삽입하여 이 숫자와 함께 산술 수열을 형성합니다.

해결책. 기본적으로 우리는 첫 번째와 마지막 숫자가 이미 알려진 5개의 숫자 시퀀스를 만들어야 합니다. 누락된 숫자를 변수 $x$, $y$ 및 $z$로 표시해 보겠습니다.

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

숫자 $y$는 시퀀스의 "중간"입니다. 숫자 $x$ 및 $z$와 숫자 $-\frac(1)(2)$ 및 $-\frac에서 등거리에 있습니다. (1)( 6)$. 그리고 $x$ 및 $z$ 숫자에서 우리가 속한 경우 이 순간$y$를 얻을 수 없으면 진행이 끝나면 상황이 달라집니다. 산술 평균을 기억해 봅시다.

이제 $y$를 알면 나머지 숫자를 찾을 수 있습니다. $x$는 $-\frac(1)(2)$와 방금 찾은 $y=-\frac(1)(3)$ 사이에 있습니다. 그렇기 때문에

비슷한 추론을 사용하여 나머지 숫자를 찾습니다.

준비가 된! 세 개의 숫자를 모두 찾았습니다. 원래 숫자 사이에 삽입되어야 하는 순서대로 답안에 적어봅시다.

답: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

작업 번호 10. 삽입된 숫자의 첫 번째, 두 번째, 마지막 숫자의 합이 56이라는 것을 알고 있는 경우 숫자 2와 42 사이에 이 숫자와 함께 산술 수열을 형성하는 여러 숫자를 삽입합니다.

해결책. 그러나 훨씬 더 복잡한 문제는 이전 문제와 동일한 방식, 즉 산술 평균을 통해 해결됩니다. 문제는 얼마나 많은 숫자를 입력해야 하는지 정확히 알 수 없다는 것입니다. 따라서 모든 것을 삽입한 후 정확히 $n$ 숫자가 있고 첫 번째 숫자는 2이고 마지막 숫자는 42라고 명확하게 가정해 보겠습니다. 이 경우 필요한 산술 진행은 다음 형식으로 표시될 수 있습니다.

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \오른쪽\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

그러나 숫자 $((a)_(2))$ 및 $((a)_(n-1))$는 가장자리의 숫자 2와 42에서 서로 한 단계씩 얻어지며, 즉 . 시퀀스의 중앙으로 이동합니다. 그리고 이것은 다음을 의미합니다

\[((a)_(2))+((a)_(n-1))=2+42=44\]

그러나 위에 작성된 표현식은 다음과 같이 다시 작성할 수 있습니다.

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(정렬)\]

$((a)_(3))$ 및 $((a)_(1))$를 알면 진행의 차이를 쉽게 찾을 수 있습니다.

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\오른쪽 화살표 d=5. \\ \end(정렬)\]

남은 것은 나머지 항을 찾는 것입니다.

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(정렬)\]

따라서 이미 9번째 단계에서 우리는 시퀀스의 왼쪽 끝인 숫자 42에 도달하게 됩니다. 전체적으로 7개의 숫자만 삽입해야 했습니다: 7; 12; 17; 22; 27; 32; 37.

답: 7; 12; 17; 22; 27; 32; 37

진행에 관한 단어 문제

결론적으로 나는 비교적 간단한 몇 가지 문제를 고려하고 싶다. 글쎄요, 아주 간단합니다. 학교에서 수학을 공부하고 위에 쓰여진 내용을 읽지 않은 대부분의 학생들에게는 이러한 문제가 어려워 보일 수 있습니다. 그럼에도 불구하고 이는 OGE 및 수학 통합 상태 시험에 나타나는 문제 유형이므로 숙지하는 것이 좋습니다.

작업 번호 11. 팀은 1월에 62개의 부품을 생산했으며, 매년 다음 달이전보다 14개 더 많은 부품을 생산했습니다. 팀은 11월에 몇 개의 부품을 생산했습니까?

해결책. 분명히, 월별로 나열된 부품 수는 증가하는 산술 진행을 나타냅니다. 게다가:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

11월은 11번째 달이므로 $((a)_(11))$를 찾아야 합니다.

\[((a)_(11))=62+10\cdot 14=202\]

따라서 11월에는 202개의 부품이 생산될 예정이다.

작업 번호 12. 제본 워크숍은 1월에 216권을 제본했으며, 다음 달에는 전월보다 4권을 더 제본했습니다. 12월 워크숍에서는 몇 권의 책을 제본했나요?

해결책. 모두 같은:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

12월은 한 해의 마지막 12번째 달이므로 $((a)_(12))$를 찾고 있습니다.

\[((a)_(12))=216+11\cdot 4=260\]

이것이 정답입니다. 12월에는 260권이 제본됩니다.

글쎄요, 여기까지 읽으셨다면 서둘러 축하드립니다. 산수 진행에서 "젊은 투사 과정"을 성공적으로 완료하셨습니다. 진행의 합계에 대한 공식과 그에 따른 중요하고 매우 유용한 결과를 연구할 다음 강의로 안전하게 넘어갈 수 있습니다.

산술 및 기하 수열

이론적인 정보

이론적인 정보

산술 진행

기하학적 진행

정의

산술 진행 두 번째부터 시작하는 각 멤버가 동일한 번호에 추가된 이전 멤버와 동일한 시퀀스입니다. (-진행차이)

기하학적 진행 비엔 0이 아닌 숫자의 시퀀스로, 각 항은 두 번째부터 시작하여 이전 항에 동일한 숫자를 곱한 것과 같습니다. (- 진행의 분모)

반복 공식

어떤 자연적인 N
n + 1 = n + d

어떤 자연적인 N
bn + 1 = bn ∙ q, bn ≠ 0

수식 n번째 항

n = a 1 + d (n – 1)

bn = b 1 ∙ qn - 1 , bn ≠ 0

특징적인 재산
처음 n항의 합

댓글이 있는 작업의 예

연습 1

산술진행에서 ( ) 1 = -6, 2

n번째 항의 공식에 따르면:

22 = 1+ d (22 - 1) = 1+ 21일

조건별:

1= -6, 그러면 22= -6 + 21d .

진행의 차이를 찾는 것이 필요합니다.

d = 2 – 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = - 48.

답변 : 22 = -48.

작업 2

기하수열의 다섯 번째 항을 찾습니다: -3; 6;....

첫 번째 방법(n항 공식 사용)

기하수열의 n번째 항에 대한 공식에 따르면:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

왜냐하면 비 1 = -3,

두 번째 방법(반복식 사용)

진행의 분모는 -2(q = -2)이므로 다음과 같습니다.

비 3 = 6 ∙ (-2) = -12;

비 4 = -12 ∙ (-2) = 24;

비 5 = 24 ∙ (-2) = -48.

답변 : 비 5 = -48.

작업 3

산술진행에서 ( 안) 74 = 34; 76= 156. 이 수열의 75번째 항을 구하십시오.

산술 수열의 경우 특징적인 속성은 다음과 같은 형식을 갖습니다. .

그러므로:

.

데이터를 공식으로 대체해 보겠습니다.

답: 95.

작업 4

산술진행에서 ( 안 ) 안= 3n - 4. 처음 17개 항의 합을 구합니다.

산술 수열의 처음 n 항의 합을 구하려면 두 가지 공식이 사용됩니다.

.

어느 것이 이 경우사용하기 더 편리해졌나요?

조건에 따라 원래 수열의 n번째 항에 대한 공식은 알려져 있습니다( ) = 3n - 4. 즉시 찾을 수 있고 1, 그리고 16찾지 못한 채 d. 따라서 첫 번째 공식을 사용하겠습니다.

답: 368.

작업 5

산술진행에서( ) 1 = -6; 2= -8. 수열의 22번째 항을 구하세요.

n번째 항의 공식에 따르면:

22 = 1 + 디 (22 – 1) = 1+ 21d.

조건에 따라, 1= -6, 그러면 22= -6 + 21d . 진행의 차이를 찾는 것이 필요합니다.

d = 2 – 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = -48.

답변 : 22 = -48.

작업 6

기하학적 수열의 여러 연속 용어가 작성됩니다.

x로 표시된 진행의 항을 찾으세요.

풀 때 n 번째 항에 대한 공식을 사용합니다. bn = b 1 ∙ qn - 1을 위한 기하학적 진행. 진행의 첫 번째 용어입니다. 수열 q의 분모를 찾으려면 주어진 수열 항 중 하나를 취하고 이전 항으로 나누어야 합니다. 이 예에서는 취하고 나눌 수 있습니다. 우리는 q = 3을 얻습니다. 주어진 기하학적 수열의 세 번째 항을 찾는 것이 필요하기 때문에 n 대신에 공식에서 3을 대체합니다.

발견된 값을 공식에 ​​대입하면 다음과 같은 결과를 얻습니다.

.

답변 : .

작업 7

n번째 항의 수식에 따른 수열 중에서 조건을 만족하는 수열을 선택하세요. 27 > 9:

왜냐하면 주어진 조건는 수열의 27번째 항에 대해 충족되어야 하며, 네 가지 수열 각각에서 n 대신 27을 대체합니다. 4번째 진행에서는 다음을 얻습니다.

.

답: 4.

작업 8

산술 진행에서 1= 3, d = -1.5. 지정하다 가장 높은 가치 n에 대해 부등식이 성립함 > -6.

산술급수에 관한 문제는 고대에도 이미 존재했습니다. 그들은 실질적인 필요가 있었기 때문에 나타나서 해결책을 요구했습니다.

그래서 파피루스 중 하나에서 고대 이집트", 수학적 내용이 있는 린드 파피루스(기원전 19세기)에는 다음 작업이 포함되어 있습니다. 각 사람의 차이가 측정의 8분의 1인 경우 빵 10단위를 10명에게 나눕니다."

그리고 고대 그리스의 수학 작품에는 산술 수열과 관련된 우아한 정리가 있습니다. 따라서 알렉산드리아의 히프시클레스(많은 흥미로운 문제들을 편집하고 유클리드의 원소론에 14권을 추가한 2세기)는 다음과 같은 생각을 공식화했습니다. 우수즉, 후반부 항의 합은 전반부 항의 합보다 항 수의 1/2의 제곱을 곱한 것입니다.”

시퀀스는 an으로 표시됩니다. 시퀀스의 번호는 멤버라고 하며 일반적으로 이 멤버의 일련 번호를 나타내는 인덱스가 있는 문자로 지정됩니다(a1, a2, a3 ... 읽기: "a 1st", "a 2nd", "a 3rd" 등등).

시퀀스는 무한하거나 유한할 수 있습니다.

산술진행이란 무엇인가요? 이는 이전 항(n)에 수열의 차이인 동일한 수 d를 더하여 얻은 것을 의미합니다.

만약 d<0, то мы имеем убывающую прогрессию. Если d>0이면 이 진행은 증가하는 것으로 간주됩니다.

산술수열은 처음 몇 개의 항만 고려하면 유한하다고 합니다. 회원 수가 매우 많아서 이미 끝없는 발전을 이루고 있습니다.

모든 산술 수열은 다음 공식으로 정의됩니다.

an =kn+b, b와 k는 숫자입니다.

반대의 진술은 절대적으로 사실입니다. 수열이 유사한 공식으로 주어지면 그것은 정확히 다음과 같은 속성을 갖는 산술 수열입니다.

  1. 수열의 각 항은 이전 항과 다음 항의 산술 평균입니다.
  2. 역: 두 번째부터 시작하여 각 항이 이전 항과 다음 항의 산술 평균인 경우, 즉 조건이 충족되면 이 수열은 산술 수열입니다. 이러한 평등은 진보의 표시이기도 하며, 이것이 일반적으로 진보의 특징적인 속성이라고 불리는 이유입니다.
    같은 방식으로, 이 속성을 반영하는 정리는 참입니다. 수열은 2번째부터 시작하여 수열의 모든 항에 대해 이 등식이 참인 경우에만 수열입니다.

산술 수열의 네 숫자에 대한 특징적 속성은 n + m = k + l인 경우(m, n, k는 수열 숫자임) 공식 an + am = ak + al로 표현될 수 있습니다.

산술 수열에서 필요한 (N번째) 항은 다음 공식을 사용하여 찾을 수 있습니다.

예를 들어, 산술 수열의 첫 번째 항(a1)이 주어지고 3과 같으며 차이(d)는 4와 같습니다. 이 수열의 45번째 항을 구해야 합니다. a45 = 1+4(45-1)=177

an = ak + d(n - k) 공식을 사용하면 k번째 항을 통해 산술 수열의 n번째 항을 결정할 수 있습니다.

산술 수열(유한 수열의 처음 n 항을 의미) 항의 합은 다음과 같이 계산됩니다.

Sn = (a1+an) n/2.

첫 번째 항도 알려진 경우 계산에 다른 공식이 편리합니다.

Sn = ((2a1+d(n-1))/2)*n.

n개의 항을 포함하는 등차수열의 합은 다음과 같이 계산됩니다.

계산 공식의 선택은 문제 조건과 초기 데이터에 따라 달라집니다.

1,2,3,...,n,...-과 같은 숫자의 자연 계열 가장 간단한 예산술 진행.

산술수열 외에도 기하수열도 있는데, 이는 고유한 속성과 특징을 가지고 있습니다.



우리는 읽기를 권장합니다

맨 위