Cum să găsiți sn într-o progresie aritmetică. Progresie aritmetică

Dietele 14.10.2019
Dietele

Da Da: progresie aritmetică- acestea nu sunt jucării pentru tine :)

Ei bine, prieteni, dacă citiți acest text, atunci dovada internă a capacului îmi spune că încă nu știți ce este o progresie aritmetică, dar chiar (nu, așa: SOOOOO!) doriți să știți. Prin urmare, nu vă voi chinui cu prezentări lungi și voi ajunge direct la obiect.

În primul rând, câteva exemple. Să ne uităm la mai multe seturi de numere:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ce au în comun toate aceste seturi? La prima vedere, nimic. Dar de fapt există ceva. Și anume: fiecare element următor diferă de cel precedent prin același număr.

Judecă singur. Primul set este pur și simplu numere consecutive, fiecare următor fiind cu unul mai mult decât precedentul. În al doilea caz, diferența dintre numerele adiacente este deja de cinci, dar această diferență este încă constantă. În al treilea caz, există cu totul rădăcini. Cu toate acestea, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ și $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, adică. și în acest caz, fiecare element următor crește pur și simplu cu $\sqrt(2)$ (și nu vă fie teamă că acest număr este irațional).

Deci: toate astfel de secvențe se numesc progresii aritmetice. Să dăm o definiție strictă:

Definiție. O succesiune de numere în care fiecare următor diferă de precedentul prin exact aceeași cantitate se numește progresie aritmetică. Însuși valoarea cu care numerele diferă se numește diferență de progresie și este cel mai adesea notă cu litera $d$.

Notație: $\left(((a)_(n)) \right)$ este progresia în sine, $d$ este diferența acesteia.

Și doar câteva note importante. În primul rând, progresia este luată în considerare ordonat succesiune de numere: au voie să fie citite strict în ordinea în care sunt scrise - și nimic altceva. Numerele nu pot fi rearanjate sau schimbate.

În al doilea rând, succesiunea în sine poate fi fie finită, fie infinită. De exemplu, mulțimea (1; 2; 3) este în mod evident o progresie aritmetică finită. Dar dacă scrieți ceva în spirit (1; 2; 3; 4; ...) - aceasta este deja o progresie infinită. Elipsele de după cele patru par să sugereze că mai urmează destul de multe numere. Infinit multe, de exemplu.

De asemenea, aș dori să remarc că progresiile pot fi în creștere sau în scădere. Am văzut deja crescătoare - același set (1; 2; 3; 4; ...). Iată exemple de progresii în scădere:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

BINE BINE: ultimul exemplu poate părea excesiv de complicat. Dar restul cred că ai înțeles. Prin urmare, introducem noi definiții:

Definiție. O progresie aritmetica se numeste:

  1. crescând dacă fiecare element următor este mai mare decât cel anterior;
  2. descrescătoare dacă, dimpotrivă, fiecare element ulterior este mai mic decât cel anterior.

În plus, există așa-numitele secvențe „staționare” - ele constau din același număr care se repetă. De exemplu, (3; 3; 3; ...).

Rămâne o singură întrebare: cum să distingem o progresie crescătoare de una în scădere? Din fericire, totul aici depinde doar de semnul numărului $d$, adică. diferente de progresie:

  1. Dacă $d \gt 0$, atunci progresia crește;
  2. Dacă $d \lt 0$, atunci progresia este în mod evident în scădere;
  3. În cele din urmă, există cazul $d=0$ - în acest caz întreaga progresie este redusă la o secvență staționară numere identice: (1; 1; 1; 1; ...), etc.

Să încercăm să calculăm diferența $d$ pentru cele trei progresii descrescătoare prezentate mai sus. Pentru a face acest lucru, este suficient să luați oricare două elemente adiacente (de exemplu, primul și al doilea) și să scădeți numărul din stânga din numărul din dreapta. Va arata asa:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

După cum putem vedea, în toate cele trei cazuri diferența sa dovedit a fi de fapt negativă. Și acum că ne-am dat seama mai mult sau mai puțin definițiile, este timpul să ne dăm seama cum sunt descrise progresiile și ce proprietăți au acestea.

Termeni de progresie și formula de recurență

Deoarece elementele secvențelor noastre nu pot fi schimbate, ele pot fi numerotate:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \dreapta\)\]

Elementele individuale ale acestui set sunt numite membri ai unei progresii. Ele sunt indicate printr-un număr: primul membru, al doilea membru etc.

În plus, după cum știm deja, termenii învecinați ai progresiei sunt legați prin formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Pe scurt, pentru a găsi al $n$-lea termen al unei progresii, trebuie să cunoașteți $n-1$-lea termen și diferența $d$. Această formulă se numește recurentă, deoarece cu ajutorul ei poți găsi orice număr doar cunoscând-o pe precedentul (și de fapt, pe toate precedentele). Acest lucru este foarte incomod, deci există o formulă mai vicleană care reduce orice calcul la primul termen și diferența:

\[((a)_(n))=((a)_(1))+\stanga(n-1 \dreapta)d\]

Probabil că ați întâlnit deja această formulă. Le place să o ofere în tot felul de cărți de referință și cărți cu probleme. Și în orice manual de matematică sensibil este unul dintre primele.

Totuși, vă sugerez să exersați puțin.

Sarcina nr. 1. Notați primii trei termeni ai progresiei aritmetice $\left(((a)_(n)) \right)$ dacă $((a)_(1))=8,d=-5$.

Soluţie. Deci, cunoaștem primul termen $((a)_(1))=8$ și diferența de progresie $d=-5$. Să folosim formula tocmai dată și să înlocuim $n=1$, $n=2$ și $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Răspuns: (8; 3; −2)

Asta e tot! Vă rugăm să rețineți: progresul nostru este în scădere.

Desigur, $n=1$ nu a putut fi înlocuit - primul termen este deja cunoscut de noi. Totuși, înlocuind unitatea, am fost convinși că și pentru primul termen formula noastră funcționează. În alte cazuri, totul s-a rezumat la aritmetică banală.

Sarcina nr. 2. Scrieți primii trei termeni ai unei progresii aritmetice dacă al șaptelea termen este egal cu -40 și al șaptesprezecelea termen este egal cu -50.

Soluţie. Să scriem condiția problemei în termeni familiari:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \dreapta.\]

Am pus semnul de sistem pentru că aceste cerințe trebuie îndeplinite simultan. Acum să observăm că, dacă o scădem pe prima din a doua ecuație (avem dreptul să facem asta, deoarece avem un sistem), obținem asta:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Așa este de ușor să găsești diferența de progresie! Tot ce rămâne este să înlocuiți numărul găsit în oricare dintre ecuațiile sistemului. De exemplu, în primul:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrice)\]

Acum, cunoscând primul termen și diferența, rămâne să găsim al doilea și al treilea termen:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gata! Problema este rezolvată.

Răspuns: (−34; −35; −36)

Observați proprietatea interesantă a progresiei pe care am descoperit-o: dacă luăm termenii $n$th și $m$th și îi scădem unul de celălalt, obținem diferența de progresie înmulțită cu numărul $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simplu dar foarte proprietate utilă, pe care trebuie neapărat să-l cunoașteți - cu ajutorul lui puteți accelera semnificativ rezolvarea multor probleme de progresie. Iată un exemplu clar în acest sens:

Sarcina nr. 3. Al cincilea termen al unei progresii aritmetice este 8,4, iar al zecelea termen este 14,4. Găsiți al cincisprezecelea termen al acestei progresii.

Soluţie. Deoarece $((a)_(5))=8,4$, $((a)_(10))=14,4$ și trebuie să găsim $((a)_(15))$, observăm următoarele:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Dar prin condiția $((a)_(10))-((a)_(5))=14.4-8.4=6$, deci $5d=6$, din care avem:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Răspuns: 20.4

Asta e tot! Nu a fost nevoie să creăm sisteme de ecuații și să calculăm primul termen și diferența - totul a fost rezolvat în doar câteva linii.

Acum să ne uităm la un alt tip de problemă - căutarea termenilor negativi și pozitivi ai unei progresii. Nu este un secret că, dacă o progresie crește, iar primul său termen este negativ, atunci mai devreme sau mai târziu vor apărea termeni pozitivi în ea. Și invers: termenii unei progresii în scădere vor deveni mai devreme sau mai târziu negativi.

În același timp, nu este întotdeauna posibil să găsiți acest moment „în față” parcurgând secvențial elementele. Adesea, problemele sunt scrise în așa fel încât, fără a cunoaște formulele, calculele ar dura mai multe coli de hârtie – pur și simplu am adormi în timp ce găsim răspunsul. Prin urmare, să încercăm să rezolvăm aceste probleme într-un mod mai rapid.

Sarcina nr. 4. Câți termeni negativi există în progresia aritmetică −38,5; −35,8; ...?

Soluţie. Deci, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, de unde găsim imediat diferența:

Rețineți că diferența este pozitivă, deci progresia crește. Primul termen este negativ, așa că într-adevăr, la un moment dat, ne vom împiedica de numere pozitive. Singura întrebare este când se va întâmpla asta.

Să încercăm să aflăm cât timp (adică până la ce număr natural $n$) rămâne negativitatea termenilor:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \dreapta. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ultima linie necesită câteva explicații. Deci știm că $n \lt 15\frac(7)(27)$. Pe de altă parte, ne mulțumim doar cu valori întregi ale numărului (mai mult: $n\in \mathbb(N)$), deci cel mai mare număr permis este tocmai $n=15$ și în niciun caz 16 .

Sarcina nr. 5. În progresie aritmetică $(()_(5))=-150,(()_(6))=-147$. Aflați numărul primului termen pozitiv al acestei progresii.

Aceasta ar fi exact aceeași problemă ca cea anterioară, dar nu știm $((a)_(1))$. Dar termenii vecini sunt cunoscuți: $((a)_(5))$ și $((a)_(6))$, așa că putem găsi cu ușurință diferența de progresie:

În plus, să încercăm să exprimăm al cincilea termen prin primul și diferența folosind formula standard:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Acum procedăm prin analogie cu sarcina anterioară. Să aflăm în ce moment în succesiunea noastră vor apărea numerele pozitive:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Soluția întreagă minimă a acestei inegalități este numărul 56.

Vă rugăm să rețineți: în ultima sarcină totul s-a rezumat la o inegalitate strictă, așa că opțiunea $n=55$ nu ne va potrivi.

Acum că am învățat cum să rezolvăm probleme simple, să trecem la altele mai complexe. Dar mai întâi, să studiem o altă proprietate foarte utilă a progresiilor aritmetice, care ne va economisi mult timp și celule inegale în viitor :)

Media aritmetică și indentări egale

Să luăm în considerare câțiva termeni consecutivi ai progresiei aritmetice crescătoare $\left(((a)_(n)) \right)$. Să încercăm să le marchem pe linia numerică:

Termenii unei progresii aritmetice pe dreapta numerică

Am marcat în mod special termeni arbitrari $((a)_(n-3)),...,((a)_(n+3))$, și nu niște $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Pentru că regula despre care vă voi spune acum funcționează la fel pentru orice „segment”.

Și regula este foarte simplă. Să ne amintim formula recurentă și să o scriem pentru toți termenii marcați:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Cu toate acestea, aceste egalități pot fi rescrise diferit:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ei bine, ce? Și faptul că termenii $((a)_(n-1))$ și $((a)_(n+1))$ se află la aceeași distanță de $((a)_(n)) $ . Și această distanță este egală cu $d$. Același lucru se poate spune despre termenii $((a)_(n-2))$ și $((a)_(n+2))$ - sunt, de asemenea, eliminați din $((a)_(n) )$ la aceeași distanță egală cu $2d$. Putem continua la infinit, dar sensul este bine ilustrat de imagine


Termenii progresiei se află la aceeași distanță de centru

Ce înseamnă asta pentru noi? Aceasta înseamnă că $((a)_(n))$ poate fi găsit dacă numerele învecinate sunt cunoscute:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Am obținut o afirmație excelentă: fiecare termen al unei progresii aritmetice este egal cu media aritmetică a termenilor învecinați! Mai mult decât atât: ne putem întoarce de la $((a)_(n))$ la stânga și la dreapta nu cu un pas, ci cu $k$ pași - și formula va fi în continuare corectă:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Acestea. putem găsi cu ușurință câțiva $((a)_(150))$ dacă știm $((a)_(100))$ și $((a)_(200))$, deoarece $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. La prima vedere, poate părea că acest fapt nu ne oferă nimic util. Cu toate acestea, în practică, multe probleme sunt special adaptate pentru a utiliza media aritmetică. Aruncă o privire:

Sarcina nr. 6. Găsiți toate valorile lui $x$ pentru care numerele $-6((x)^(2))$, $x+1$ și $14+4((x)^(2))$ sunt termeni consecutivi ai o progresie aritmetică (în ordinea indicată).

Soluţie. Deoarece aceste numere sunt membre ale unei progresii, condiția mediei aritmetice este îndeplinită pentru ele: elementul central $x+1$ poate fi exprimat în termeni de elemente învecinate:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

A ieșit clasic ecuație pătratică. Rădăcinile sale: $x=2$ și $x=-3$ sunt răspunsurile.

Răspuns: −3; 2.

Sarcina nr. 7. Găsiți valorile lui $$ pentru care numerele $-1;4-3;(()^(2))+1$ formează o progresie aritmetică (în această ordine).

Soluţie. Să exprimăm din nou termenul mijlociu prin media aritmetică a termenilor vecini:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Din nou ecuația cuadratică. Și din nou există două rădăcini: $x=6$ și $x=1$.

Raspunsul 1; 6.

Dacă în procesul de rezolvare a unei probleme vii cu niște numere brutale, sau nu ești complet sigur de corectitudinea răspunsurilor găsite, atunci există o tehnică minunată care îți permite să verifici: am rezolvat corect problema?

Să presupunem că în problema nr. 6 am primit răspunsurile −3 și 2. Cum putem verifica dacă aceste răspunsuri sunt corecte? Să le conectăm la starea originală și să vedem ce se întâmplă. Permiteți-mi să vă reamintesc că avem trei numere ($-6(()^(2))$, $+1$ și $14+4(()^(2))$), care trebuie să formeze o progresie aritmetică. Să înlocuim $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Am obținut numerele −54; −2; 50 care diferă cu 52 este, fără îndoială, o progresie aritmetică. Același lucru se întâmplă și pentru $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Din nou o progresie, dar cu o diferență de 27. Astfel, problema a fost rezolvată corect. Cei care doresc pot verifica singuri a doua problemă, dar voi spune imediat: totul este corect și acolo.

În general, rezolvând ultimele probleme, am dat peste alta fapt interesant, care trebuie reținut și:

Dacă trei numere sunt astfel încât al doilea este media aritmetică a primului și ultimului, atunci aceste numere formează o progresie aritmetică.

În viitor, înțelegerea acestei afirmații ne va permite să „construim” literalmente progresiile necesare pe baza condițiilor problemei. Dar înainte de a ne angaja într-o astfel de „construcție”, ar trebui să fim atenți la încă un fapt, care decurge direct din ceea ce a fost deja discutat.

Gruparea și însumarea elementelor

Să revenim din nou la axa numerelor. Să notăm acolo câțiva membri ai progresiei, între care, poate. valorează mulți alți membri:

Pe linia numerică sunt marcate 6 elemente

Să încercăm să exprimăm „coada din stânga” prin $((a)_(n))$ și $d$, iar „coada din dreapta” prin $((a)_(k))$ și $d$. E foarte simplu:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Acum rețineți că următoarele sume sunt egale:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mai simplu spus, dacă considerăm ca început două elemente ale progresiei, care în total sunt egale cu un anumit număr $S$, și apoi începem să pășim din aceste elemente în direcții opuse (unul către celălalt sau invers pentru a se îndepărta), apoi sumele elementelor de care ne vom împiedica vor fi de asemenea egale$S$. Acest lucru poate fi cel mai clar reprezentat grafic:


Indentațiile egale dau cantități egale

Înţelegere Acest lucru ne va permite să rezolvăm problemele într-un mod fundamental mai mult nivel inalt dificultăți decât cele pe care le-am considerat mai sus. De exemplu, acestea:

Sarcina nr. 8. Determinați diferența unei progresii aritmetice în care primul termen este 66, iar produsul dintre al doilea și al doisprezecelea termeni este cel mai mic posibil.

Soluţie. Să scriem tot ce știm:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Deci, nu cunoaștem diferența de progresie $d$. De fapt, întreaga soluție va fi construită în jurul diferenței, deoarece produsul $((a)_(2))\cdot ((a)_(12))$ poate fi rescris după cum urmează:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Pentru cei din rezervor: am luat multiplicatorul total de 11 din a doua paranteză. Astfel, produsul necesar este o funcție pătratică față de variabila $d$. Prin urmare, luați în considerare funcția $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - graficul său va fi o parabolă cu ramuri în sus, deoarece dacă extindem parantezele, obținem:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

După cum puteți vedea, coeficientul celui mai mare termen este 11 - acesta este un număr pozitiv, deci avem de-a face cu o parabolă cu ramuri în sus:


programa funcţie pătratică- parabola

Vă rugăm să rețineți: această parabolă își ia valoarea minimă la vârful său cu abscisa $((d)_(0))$. Desigur, putem calcula această abscisă folosind schema standard (există formula $((d)_(0))=(-b)/(2a)\;$), dar ar fi mult mai rezonabil să remarcăm că vârful dorit se află pe axa de simetrie a parabolei, prin urmare punctul $((d)_(0))$ este echidistant de rădăcinile ecuației $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

De aceea, nu m-am grăbit să deschid parantezele: în forma lor originală, rădăcinile erau foarte, foarte ușor de găsit. Prin urmare, abscisa este egală cu media aritmetică a numerelor −66 și −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ce ne oferă numărul descoperit? Cu ea, produsul solicitat capătă cea mai mică valoare (apropo, nu am calculat niciodată $((y)_(\min ))$ - nu ni se cere acest lucru). În același timp, acest număr este diferența progresiei inițiale, adică. am gasit raspunsul :)

Răspuns: −36

Sarcina nr. 9. Între numerele $-\frac(1)(2)$ și $-\frac(1)(6)$ introduceți trei numere astfel încât împreună cu aceste numere să formeze o progresie aritmetică.

Soluţie. În esență, trebuie să facem o secvență de cinci numere, cu primul și ultimul număr deja cunoscute. Să notăm numerele lipsă prin variabilele $x$, $y$ și $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Rețineți că numărul $y$ este „mijlocul” secvenței noastre - este echidistant de numerele $x$ și $z$ și de numerele $-\frac(1)(2)$ și $-\frac (1)( 6)$. Și dacă din numerele $x$ și $z$ ne aflăm acest moment nu putem obține $y$, atunci situația este diferită cu sfârșitul progresiei. Să ne amintim media aritmetică:

Acum, cunoscând $y$, vom găsi numerele rămase. Rețineți că $x$ se află între numerele $-\frac(1)(2)$ și $y=-\frac(1)(3)$ pe care tocmai le-am găsit. De aceea

Folosind un raționament similar, găsim numărul rămas:

Gata! Am găsit toate cele trei numere. Să le scriem în răspuns în ordinea în care ar trebui să fie introduse între numerele originale.

Răspuns: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Sarcina nr. 10. Între numerele 2 și 42, introduceți mai multe numere care, împreună cu aceste numere, formează o progresie aritmetică, dacă știți că suma primului, al doilea și ultimul dintre numerele introduse este 56.

Soluţie. O problemă și mai complexă, care, însă, se rezolvă după aceeași schemă ca și cele precedente - prin media aritmetică. Problema este că nu știm exact câte numere trebuie introduse. Prin urmare, să presupunem pentru certitudine că după ce ați inserat totul vor fi exact $n$ numere, iar primul dintre ele este 2, iar ultimul este 42. În acest caz, progresia aritmetică necesară poate fi reprezentată sub forma:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \dreapta\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Rețineți, totuși, că numerele $((a)_(2))$ și $((a)_(n-1))$ sunt obținute din numerele 2 și 42 de la margini cu un pas unul către celălalt, adică . spre centrul secvenței. Și asta înseamnă că

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Dar atunci expresia scrisă mai sus poate fi rescrisă după cum urmează:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Cunoscând $((a)_(3))$ și $((a)_(1))$, putem găsi cu ușurință diferența de progresie:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Săgeată la dreapta d=5. \\ \end(align)\]

Tot ce rămâne este să găsiți termenii rămași:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Astfel, deja la pasul 9 vom ajunge la capătul din stânga secvenței – numărul 42. În total, au trebuit introduse doar 7 numere: 7; 12; 17; 22; 27; 32; 37.

Răspuns: 7; 12; 17; 22; 27; 32; 37

Probleme de cuvinte cu progresii

În concluzie, aș dori să iau în considerare câteva probleme relativ simple. Ei bine, la fel de simplu: pentru majoritatea elevilor care studiază matematica la școală și nu au citit ce este scris mai sus, aceste probleme pot părea grele. Cu toate acestea, acestea sunt tipurile de probleme care apar în OGE și examenul de stat unificat la matematică, așa că vă recomand să vă familiarizați cu ele.

Sarcina nr. 11. Echipa a produs 62 de piese în ianuarie și în fiecare luna viitoare a produs cu 14 piese mai multe decât precedentul. Câte piese a produs echipa în noiembrie?

Soluţie. Evident, numărul de piese enumerate pe lună va reprezenta o progresie aritmetică din ce în ce mai mare. În plus:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Noiembrie este a 11-a lună a anului, așa că trebuie să găsim $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Prin urmare, în noiembrie vor fi produse 202 piese.

Sarcina nr. 12. Atelierul de legătorie a legat 216 cărți în ianuarie, iar în fiecare lună următoare a legat cu 4 cărți mai multe decât în ​​cea precedentă. Câte cărți a legat atelierul în decembrie?

Soluţie. Tot la fel:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Decembrie este ultima, a 12-a lună a anului, așa că căutăm $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Acesta este răspunsul - 260 de cărți vor fi legate în decembrie.

Ei bine, dacă ați citit până aici, mă grăbesc să vă felicit: ați finalizat cu succes „cursul tânărului luptător” în progresii aritmetice. Puteți trece în siguranță la următoarea lecție, unde vom studia formula pentru suma progresiei, precum și consecințele importante și foarte utile din aceasta.

Înainte să începem să decidem probleme de progresie aritmetică, să luăm în considerare ce este o secvență de numere, deoarece o progresie aritmetică este un caz special al unei secvențe de numere.

O secvență de numere este un set de numere, fiecare element având propriul său număr de serie. Elementele acestei mulțimi sunt numite membri ai secvenței. Numărul de serie al unui element de secvență este indicat printr-un index:

Primul element al secvenței;

Al cincilea element al secvenței;

- elementul „n-lea” al secvenței, adică elementul „stă la coadă” la numărul n.

Există o relație între valoarea unui element de secvență și numărul său de secvență. Prin urmare, putem considera o secvență ca o funcție al cărei argument este numărul ordinal al elementului secvenței. Cu alte cuvinte, putem spune asta secvența este o funcție a argumentului natural:

Secvența poate fi setată în trei moduri:

1 . Secvența poate fi specificată folosind un tabel.În acest caz, pur și simplu setăm valoarea fiecărui membru al secvenței.

De exemplu, Cineva a decis să se ocupe de gestionarea personală a timpului și, pentru început, să numere cât timp petrece pe VKontakte în timpul săptămânii. Înregistrând timpul în tabel, el va primi o secvență formată din șapte elemente:

Prima linie a tabelului indică numărul zilei săptămânii, a doua - timpul în minute. Vedem că, adică luni, Cineva a petrecut 125 de minute pe VKontakte, adică joi - 248 de minute și, adică, vineri doar 15.

2 . Secvența poate fi specificată folosind formula a n-a termen.

În acest caz, dependența valorii unui element de secvență de numărul său este exprimată direct sub forma unei formule.

De exemplu, dacă , atunci

Pentru a găsi valoarea unui element de secvență cu un număr dat, înlocuim numărul elementului în formula celui de-al n-lea termen.

Facem același lucru dacă trebuie să găsim valoarea unei funcții dacă valoarea argumentului este cunoscută. Inlocuim valoarea argumentului in ecuatia functiei:

Dacă, de exemplu, , Acea

Permiteți-mi să observ încă o dată că într-o secvență, spre deosebire de o funcție numerică arbitrară, argumentul poate fi doar un număr natural.

3 . Secvența poate fi specificată folosind o formulă care exprimă dependența valorii numărului membru al secvenței n de valorile membrilor anteriori.

În acest caz, nu este suficient să cunoaștem doar numărul membrului secvenței pentru a-i găsi valoarea. Trebuie să specificăm primul membru sau primii câțiva membri ai secvenței. ,

De exemplu, luați în considerare succesiunea Putem găsi valorile membrilor secvenței in secvență

, începând cu a treia: Adică, de fiecare dată, pentru a găsi valoarea celui de-al n-lea termen al șirului, revenim la cei doi anteriori. Această metodă de specificare a unei secvențe este numită recurent , din cuvântul latin recurro

- întoarce-te.

Acum putem defini o progresie aritmetică. O progresie aritmetică este un caz special simplu al unei secvențe de numere. este o succesiune numerică, fiecare membru al căruia, începând cu al doilea, este egal cu precedentul adăugat la același număr.


Numărul este sunat diferența de progresie aritmetică. Diferența unei progresii aritmetice poate fi pozitivă, negativă sau egală cu zero.

Dacă title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} crescând.

De exemplu, 2; 5; 8; unsprezece;...

Dacă , atunci fiecare termen al unei progresii aritmetice este mai mic decât cel precedent, iar progresia este in scadere.

De exemplu, 2; -1; -4; -7;...

Dacă , atunci toți termenii progresiei sunt egali cu același număr, iar progresia este staționar.

De exemplu, 2;2;2;2;...

Principala proprietate a unei progresii aritmetice:

Să ne uităm la poză.

Noi vedem asta

, și în același timp

Adăugând aceste două egalități, obținem:

.

Să împărțim ambele părți ale egalității la 2:

Deci, fiecare membru al progresiei aritmetice, începând de la al doilea, este egal cu media aritmetică a celor două învecinate:

Mai mult, din moment ce

, și în același timp

, Acea

, prin urmare

Fiecare termen al unei progresii aritmetice, începând cu title="k>l">, равен среднему арифметическому двух равноотстоящих. !}

Formula celui de-al treilea termen.

Vedem că termenii progresiei aritmetice satisfac următoarele relații:

și, în sfârșit

Avem formula celui de-al n-lea termen.

IMPORTANT! Orice membru al unei progresii aritmetice poate fi exprimat prin și. Cunoscând primul termen și diferența unei progresii aritmetice, puteți găsi oricare dintre termenii săi.

Suma a n termeni ai unei progresii aritmetice.

Într-o progresie aritmetică arbitrară, sumele termenilor echidistanți de cei extremi sunt egale între ele:

Considerăm o progresie aritmetică cu n termeni. Fie suma n termeni ai acestei progresii să fie egală cu .

Să aranjam mai întâi termenii progresiei în ordine crescătoare a numerelor, apoi în ordine descrescătoare:

Să adăugăm în perechi:

Suma din fiecare paranteză este , numărul de perechi este n.

Primim:

Asa de, suma n termeni ai unei progresii aritmetice poate fi găsită folosind formulele:

Sa luam in considerare rezolvarea problemelor de progresie aritmetică.

1 . Secvența este dată de formula celui de-al n-lea termen: . Demonstrați că această succesiune este o progresie aritmetică.

Să demonstrăm că diferența dintre doi termeni adiacenți ai șirului este egală cu același număr.

Am constatat că diferența dintre doi membri adiacenți ai secvenței nu depinde de numărul lor și este o constantă. Prin urmare, prin definiție, această secvență este o progresie aritmetică.

2 . Având în vedere o progresie aritmetică -31; -27;...

a) Găsiți 31 de termeni ai progresiei.

b) Stabiliți dacă numărul 41 este inclus în această progresie.

A) Noi vedem asta ;

Să scriem formula pentru al n-lea termen pentru progresia noastră.

În general

În cazul nostru , De aceea

Calculator online.
Rezolvarea unei progresii aritmetice.
Dați: a n , d, n
Găsiți: a 1

Acest program matematic găsește \(a_1\) a unei progresii aritmetice pe baza numerelor specificate de utilizator \(a_n, d\) și \(n\).
Numerele \(a_n\) și \(d\) pot fi specificate nu numai ca numere întregi, ci și ca fracții. Mai mult, numărul fracționar poate fi introdus sub forma unei fracții zecimale (\(2,5\)) și sub forma unei fracții obișnuite (\(-5\frac(2)(7)\)).

Programul nu numai că oferă răspunsul la problemă, dar afișează și procesul de găsire a unei soluții.

Acest calculator online poate fi util pentru elevii de liceu scoala secundaraîn pregătire pentru testeși examene, la testarea cunoștințelor înainte de Examenul de stat unificat, pentru ca părinții să controleze rezolvarea multor probleme de matematică și algebră. Sau poate este prea scump pentru tine să angajezi un tutor sau să cumperi manuale noi? Sau vrei doar să o faci cât mai repede posibil? teme pentru acasă

la matematică sau algebră? În acest caz, puteți folosi și programele noastre cu soluții detaliate.

În acest fel, vă puteți conduce propria pregătire și/sau formare a fraților sau surorilor mai mici, în timp ce nivelul de educație în domeniul rezolvării problemelor crește.

Dacă nu sunteți familiarizat cu regulile de introducere a numerelor, vă recomandăm să vă familiarizați cu acestea.

Reguli pentru introducerea numerelor
Numerele \(a_n\) și \(d\) pot fi specificate nu numai ca numere întregi, ci și ca fracții.

Numărul \(n\) poate fi doar un întreg pozitiv.
Reguli pentru introducerea fracțiilor zecimale.
Părțile întregi și fracționale din fracții zecimale pot fi separate fie prin punct, fie prin virgulă. De exemplu, puteți intra zecimale

deci 2,5 sau cam asa 2,5
Reguli pentru introducerea fracțiilor obișnuite.

Doar un număr întreg poate acționa ca numărător, numitor și parte întreagă a unei fracții.

Numitorul nu poate fi negativ. /
Când introduceți o fracție numerică, numărătorul este separat de numitor printr-un semn de împărțire:
Intrare:

Rezultat: \(-\frac(2)(3)\) Toată parte &
Când introduceți o fracție numerică, numărătorul este separat de numitor printr-un semn de împărțire:
separate de fracție printr-un ampersand:

Rezultat: \(-1\frac(2)(3)\)


Introduceți numerele a n , d, n

Găsiți un 1
S-a descoperit că unele scripturi necesare pentru a rezolva această problemă nu au fost încărcate și este posibil ca programul să nu funcționeze.
Este posibil să aveți AdBlock activat.

În acest caz, dezactivați-l și reîmprospătați pagina.
JavaScript este dezactivat în browserul dvs.
Pentru ca soluția să apară, trebuie să activați JavaScript.

Iată instrucțiuni despre cum să activați JavaScript în browserul dvs.
Deoarece Există o mulțime de oameni dispuși să rezolve problema, cererea dvs. a fost pusă în coadă.
În câteva secunde soluția va apărea mai jos. Va rugam asteptati


sec... daca tu, apoi puteți scrie despre asta în Formularul de feedback.
Nu uita indicați ce sarcină tu decizi ce intra in campuri.



Jocurile, puzzle-urile, emulatorii noștri:

Puțină teorie.

Secvență de numere

Numerotarea este adesea folosită în practica de zi cu zi diverse articole pentru a indica ordinea în care apar. De exemplu, casele de pe fiecare stradă sunt numerotate. În bibliotecă, abonamentele cititorilor sunt numerotate și apoi aranjate în ordinea numerelor atribuite în fișiere speciale de card.

Într-o bancă de economii, folosind numărul de cont personal al deponentului, puteți găsi cu ușurință acest cont și puteți vedea ce depozit este pe el. Lăsați contul nr. 1 să conțină un depozit de a1 ruble, contul nr. 2 să conțină un depozit de a2 ruble etc. Se dovedește succesiune de numere
a 1 , a 2 , a 3 , ..., a N
unde N este numărul tuturor conturilor. Aici, fiecare număr natural n de la 1 la N este asociat cu un număr a n.

A studiat și matematică secvențe de numere infinite:
a 1 , a 2 , a 3 , ..., a n , ... .
Se numește numărul a 1 primul termen al secvenței, numărul a 2 - al doilea termen al secvenței, numărul a 3 - al treilea termen al secvenței etc.
Se numește numărul a n al-lea (n-lea) membru al secvenței, iar numărul natural n este al acestuia număr.

De exemplu, în succesiunea de pătrate de numere naturale 1, 4, 9, 16, 25, ..., n 2, (n + 1) 2, ... și 1 = 1 este primul termen al șirului; iar n = n 2 este al n-lea termen secvențe; a n+1 = (n + 1) 2 este (n + 1)-al-lea (n plus primul) termen al secvenței. Adesea, o secvență poate fi specificată prin formula celui de-al n-lea termen. De exemplu, formula \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) definește șirul \(1, \; \frac(1)(2) , \; \frac(1)(3) , \frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Progresie aritmetică

Durata anului este de aproximativ 365 de zile. O valoare mai precisă este \(365\frac(1)(4)\) zile, astfel încât la fiecare patru ani se acumulează o eroare de o zi.

Pentru a ține seama de această eroare, la fiecare al patrulea an se adaugă o zi, iar anul prelungit se numește an bisect.

De exemplu, în mileniul trei ani bisecți sunt anii 2004, 2008, 2012, 2016, ... .

În această secvență, fiecare membru, începând cu al doilea, este egal cu precedentul, adăugat la același număr 4. Astfel de secvențe se numesc progresii aritmetice.

Definiție.
Se numește șirul de numere a 1, a 2, a 3, ..., a n, ... progresie aritmetică, dacă pentru toate naturale n egalitatea
\(a_(n+1) = a_n+d, \)
unde d este un număr.

Din această formulă rezultă că a n+1 - a n = d. Numărul d se numește diferență progresie aritmetică.

Prin definiția unei progresii aritmetice avem:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
Unde
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), unde \(n>1 \)

Astfel, fiecare termen al unei progresii aritmetice, începând de la al doilea, este egal cu media aritmetică a celor doi termeni adiacenți ai săi. Aceasta explică denumirea de progresie „aritmetică”.

Rețineți că, dacă sunt date a 1 și d, atunci termenii rămași ai progresiei aritmetice pot fi calculați folosind formula recurentă a n+1 = a n + d. În acest fel, nu este dificil să calculezi primii termeni ai progresiei, cu toate acestea, de exemplu, un 100 va necesita deja o mulțime de calcule. În mod obișnuit, formula a n-a termen este utilizată pentru aceasta. Prin definiția progresiei aritmetice
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d\)
etc.
Deloc,
\(a_n=a_1+(n-1)d, \)
deoarece al n-lea termen a unei progresii aritmetice se obține din primul termen prin adăugarea de (n-1) ori numărul d.
Această formulă se numește formula pentru al n-lea termen al unei progresii aritmetice.

Suma primilor n termeni ai unei progresii aritmetice

Aflați suma tuturor numerelor naturale de la 1 la 100.
Să scriem această sumă în două moduri:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Să adăugăm aceste egalități termen cu termen:
2S = 101 + 101 + 101 + ... + 101 + 101.
Această sumă are 100 de termeni
Prin urmare, 2S = 101 * 100, deci S = 101 * 50 = 5050.

Să considerăm acum o progresie aritmetică arbitrară
a 1 , a 2 , a 3 , ..., a n , ...
Fie S n suma primilor n termeni ai acestei progresii:
S n = a 1 , a 2 , a 3 , ..., a n
Apoi suma primilor n termeni ai unei progresii aritmetice este egală cu
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Deoarece \(a_n=a_1+(n-1)d\), atunci înlocuind un n în această formulă obținem o altă formulă pentru găsirea suma primilor n termeni ai unei progresii aritmetice:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Cărți (manuale) Rezumate ale examenului de stat unificat și ale examenului de stat unificat online Jocuri, puzzle-uri Trasarea graficelor funcțiilor Dicționar ortografic al limbii ruse Dicționar al argoului pentru tineri Catalogul școlilor rusești Catalogul instituțiilor de învățământ secundar din Rusia Catalogul universităților rusești Lista a sarcinilor

Unii oameni tratează cuvântul „progresie” cu prudență, ca pe un termen foarte complex din secțiuni matematica superioara. Între timp, cea mai simplă progresie aritmetică este munca contorului de taxi (unde există încă). Și înțelegerea esenței (și în matematică nu este nimic mai important decât „obținerea esenței”) a unei secvențe aritmetice nu este atât de dificilă, având în vedere câteva concepte elementare.

Succesiunea de numere matematice

O secvență numerică este de obicei numită o serie de numere, fiecare dintre ele având propriul său număr.

a 1 este primul membru al secvenței;

și 2 este al doilea termen al secvenței;

și 7 este al șaptelea membru al secvenței;

şi n este al n-lea membru al secvenţei;

Cu toate acestea, nu ne interesează niciun set arbitrar de numere și numere. Ne vom concentra atenția asupra unei secvențe numerice în care valoarea celui de-al n-lea termen este legată de numărul său ordinal printr-o relație care poate fi formulată clar matematic. Cu alte cuvinte: valoarea numerică a numărului al n-lea este o funcție a lui n.

a este valoarea unui membru al unei secvențe numerice;

n este numărul său de serie;

f(n) este o funcție, unde numărul ordinal din șirul numeric n este argumentul.

Definiție

O progresie aritmetică se numește de obicei o succesiune numerică în care fiecare termen ulterior este mai mare (mai mic) decât cel anterior cu același număr. Formula pentru al n-lea termen al unei secvențe aritmetice este următoarea:

a n - valoarea membrului curent al progresiei aritmetice;

a n+1 - formula următorului număr;

d - diferenta (numar anume).

Este ușor de determinat că dacă diferența este pozitivă (d>0), atunci fiecare membru ulterior al seriei luate în considerare va fi mai mare decât precedentul și o astfel de progresie aritmetică va crește.

În graficul de mai jos este ușor de văzut de ce succesiunea de numere se numește „creștere”.

În cazurile în care diferența este negativă (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Valoarea specificată pentru membru

Uneori este necesar să se determine valoarea oricărui termen arbitrar a n al unei progresii aritmetice. Acest lucru se poate face prin calcularea succesivă a valorilor tuturor membrilor progresiei aritmetice, începând de la primul până la cel dorit. Cu toate acestea, această cale nu este întotdeauna acceptabilă dacă, de exemplu, este necesar să se găsească valoarea termenului de cinci mii sau opt milioane. Calculele tradiționale vor dura mult timp. Cu toate acestea, o anumită progresie aritmetică poate fi studiată folosind anumite formule. Există și o formulă pentru al n-lea termen: valoarea oricărui termen al unei progresii aritmetice poate fi determinată ca suma primului termen al progresiei cu diferența progresiei, înmulțită cu numărul termenului dorit, redusă cu unu.

Formula este universală pentru creșterea și scăderea progresiei.

Un exemplu de calcul al valorii unui termen dat

Să rezolvăm următoarea problemă de găsire a valorii celui de-al n-lea termen al unei progresii aritmetice.

Condiție: există o progresie aritmetică cu parametrii:

Primul termen al secvenței este 3;

Diferența în seria de numere este 1,2.

Sarcină: trebuie să găsiți valoarea a 214 termeni

Soluție: pentru a determina valoarea unui termen dat, folosim formula:

a(n) = a1 + d(n-1)

Înlocuind datele din enunțul problemei în expresie, avem:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Răspuns: Al 214-lea termen al secvenței este egal cu 258,6.

Avantajele acestei metode de calcul sunt evidente - întreaga soluție nu necesită mai mult de 2 linii.

Suma unui număr dat de termeni

Foarte des, într-o serie aritmetică dată, este necesar să se determine suma valorilor unora dintre segmentele sale. Pentru a face acest lucru, nu este nevoie să calculați valorile fiecărui termen și apoi să le adăugați. Această metodă este aplicabilă dacă numărul de termeni a căror sumă trebuie găsită este mic. În alte cazuri, este mai convenabil să folosiți următoarea formulă.

Suma termenilor unei progresii aritmetice de la 1 la n este egală cu suma primului și al n-lea termen, înmulțită cu numărul termenului n și împărțită la doi. Dacă în formulă valoarea celui de-al n-lea termen este înlocuită cu expresia din paragraful anterior al articolului, obținem:

Exemplu de calcul

De exemplu, să rezolvăm o problemă cu următoarele condiții:

Primul termen al secvenței este zero;

Diferența este de 0,5.

Problema necesită determinarea sumei termenilor seriei de la 56 la 101.

Soluţie. Să folosim formula pentru a determina cantitatea de progresie:

s(n) = (2∙a1 + d∙(n-1))∙n/2

În primul rând, determinăm suma valorilor a 101 termeni ai progresiei prin înlocuirea condițiilor date ale problemei noastre în formula:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2.525

Evident, pentru a afla suma termenilor progresiei de la 56 la 101, este necesar să scădem S 55 din S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Astfel, suma progresiei aritmetice pentru acest exemplu este:

s 101 - s 55 = 2.525 - 742,5 = 1.782,5

Exemplu de aplicare practică a progresiei aritmetice

La sfârșitul articolului, să revenim la exemplul unei secvențe aritmetice prezentate în primul paragraf - un taximetru (contor de mașină de taxi). Să luăm în considerare acest exemplu.

Urcarea într-un taxi (care include 3 km de călătorie) costă 50 de ruble. Fiecare kilometru următor este plătit la rata de 22 de ruble/km. Distanta de parcurs este de 30 km. Calculați costul călătoriei.

1. Să renunțăm la primii 3 km, al căror preț este inclus în costul aterizării.

30 - 3 = 27 km.

2. Calculul suplimentar nu este altceva decât analizarea unei serii de numere aritmetice.

Număr membru - numărul de kilometri parcurși (minus primii trei).

Valoarea membrului este suma.

Primul termen din această problemă va fi egal cu 1 = 50 de ruble.

Diferența de progresie d = 22 r.

numărul care ne interesează este valoarea termenului (27+1) al progresiei aritmetice - citirea contorului la sfârșitul celui de-al 27-lea kilometru este 27,999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Calculele datelor din calendar pentru o perioadă arbitrar de lungă se bazează pe formule care descriu anumite secvențe numerice. În astronomie, lungimea orbitei depinde geometric de distanța dintre corpul ceresc și stea. În plus, diverse serii de numere sunt utilizate cu succes în statistică și în alte domenii aplicate ale matematicii.

Un alt tip de succesiune de numere este geometric

Progresia geometrică este caracterizată de rate mai mari de schimbare în comparație cu progresia aritmetică. Nu întâmplător, în politică, sociologie și medicină, pentru a arăta viteza mare de răspândire a unui anumit fenomen, de exemplu, o boală în timpul unei epidemii, ei spun că procesul se dezvoltă în progresie geometrică.

Al N-lea termen al seriei de numere geometrice diferă de cel precedent prin faptul că este înmulțit cu un număr constant - numitorul, de exemplu, primul termen este 1, numitorul este în mod corespunzător egal cu 2, apoi:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - valoarea termenului curent al progresiei geometrice;

b n+1 - formula următorului termen al progresiei geometrice;

q este numitorul progresiei geometrice (un număr constant).

Dacă graficul unei progresii aritmetice este o linie dreaptă, atunci o progresie geometrică pictează o imagine ușor diferită:

Ca și în cazul aritmeticii, progresia geometrică are o formulă pentru valoarea unui termen arbitrar. Orice al n-lea termen al unei progresii geometrice este egal cu produsul primului termen și numitorul progresiei la puterea lui n redus cu unu:

Exemplu. Avem o progresie geometrică cu primul termen egal cu 3 și numitorul progresiei egal cu 1,5. Să găsim al 5-lea termen al progresiei

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Suma unui număr dat de termeni este de asemenea calculată folosind o formulă specială. Suma primilor n termeni ai unei progresii geometrice este egală cu diferența dintre produsul celui de-al n-lea termen al progresiei și numitorul său și primul termen al progresiei, împărțit la numitorul redus cu unu:

Dacă b n este înlocuit folosind formula discutată mai sus, valoarea sumei primilor n termeni ai seriei de numere luate în considerare va lua forma:

Exemplu. Progresia geometrică începe cu primul termen egal cu 1. Numitorul este setat la 3. Să aflăm suma primilor opt termeni.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Care este esența principală a formulei?

Această formulă vă permite să găsiți orice CU NUMĂRUL LUI " n" .

Desigur, trebuie să cunoști și primul termen a 1 si diferenta de progresie d, ei bine, fără acești parametri nu puteți nota o anumită progresie.

Memorarea (sau cribing) acestei formule nu este suficientă. Trebuie să-i înțelegeți esența și să aplicați formula în diverse probleme. Și, de asemenea, să nu uite la momentul potrivit, da...) Cum nu uita- Nu știu. Si aici cum să-ți amintești Dacă este necesar, cu siguranță te voi sfătui. Pentru cei care finalizează lecția până la sfârșit.)

Deci, să ne uităm la formula pentru al n-lea termen al unei progresii aritmetice.

Ce este o formulă în general? Apropo, aruncați o privire dacă nu l-ați citit. Totul este simplu acolo. Rămâne să ne dăm seama ce este al n-lea termen.

Progresia în general poate fi scrisă ca o serie de numere:

un 1, un 2, un 3, un 4, un 5, .....

a 1- denotă primul termen al unei progresii aritmetice, a 3- al treilea membru, a 4- al patrulea și așa mai departe. Dacă suntem interesați de al cincilea mandat, să presupunem că lucrăm cu un 5, dacă o sută douăzecea - s un 120.

Cum îl putem defini în termeni generali? orice termenul unei progresii aritmetice, cu orice număr? Foarte simplu! Ca aceasta:

un n

Asta e al n-lea termen al unei progresii aritmetice. Litera n ascunde toate numerele de membru simultan: 1, 2, 3, 4 și așa mai departe.

Și ce ne oferă un astfel de record? Gândește-te, în loc de un număr, au notat o scrisoare...

Această notație ne oferă un instrument puternic pentru a lucra cu progresia aritmetică. Folosind notația un n, putem găsi rapid orice membru orice progresie aritmetică. Și rezolvă o grămadă de alte probleme de progres. Vei vedea singur mai departe.

În formula pentru al n-lea termen al unei progresii aritmetice:

a n = a 1 + (n-1)d

a 1- primul termen al unei progresii aritmetice;

n- numarul membrului.

Formula conectează parametrii cheie ai oricărei progresii: un n; a 1; dȘi n. Toate problemele de progresie gravitează în jurul acestor parametri.

Formula al n-lea termen poate fi folosită și pentru a scrie o anumită progresie. De exemplu, problema poate spune că progresia este specificată de condiția:

a n = 5 + (n-1) 2.

O astfel de problemă poate fi o fundătură... Nu există nici o serie, nici o diferență... Dar, comparând condiția cu formula, este ușor de înțeles că în această progresie a 1 =5 și d=2.

Și poate fi și mai rău!) Dacă luăm aceeași condiție: a n = 5 + (n-1) 2, Da, deschideți parantezele și aduceți altele asemănătoare? Obținem o nouă formulă:

a n = 3 + 2n.

Acest Doar nu general, ci pentru o evoluție specifică. Aici se ascunde capcana. Unii oameni cred că primul termen este un trei. Deși în realitate primul termen este de cinci... Un pic mai jos vom lucra cu o astfel de formulă modificată.

În problemele de progresie există o altă notație - un n+1. Acesta este, după cum ați ghicit, termenul „n plus primul” al progresiei. Sensul său este simplu și inofensiv.) Acesta este un membru al progresiei al cărui număr este mai mare decât numărul n cu unul. De exemplu, dacă într-o problemă luăm un n al cincilea termen atunci un n+1 va fi al șaselea membru. etc.

Cel mai adesea desemnarea un n+1 găsite în formulele de recurenţă. Nu vă fie frică de acest cuvânt înfricoșător!) Acesta este doar o modalitate de a exprima un membru al unei progresii aritmetice prin cea precedentă. Să presupunem că ni se oferă o progresie aritmetică în această formă, folosind o formulă recurentă:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Al patrulea - prin al treilea, al cincilea - prin al patrulea și așa mai departe. Cum putem număra imediat, să zicem, al douăzecilea termen? un 20? Dar nu există nicio cale!) Până nu aflăm al 19-lea termen, nu îl putem număra pe al 20-lea. Aceasta este diferența fundamentală dintre formula recurentă și formula celui de-al n-lea termen. Funcționează recurent numai prin anterior termen, iar formula celui de-al n-lea termen este prin primul si permite pe loc găsiți orice membru după numărul său. Fără a calcula întreaga serie de numere în ordine.

Într-o progresie aritmetică, este ușor să transformi o formulă recurentă într-una obișnuită. Numărați o pereche de termeni consecutivi, calculați diferența d, găsiți, dacă este necesar, primul termen a 1, scrieți formula în forma ei obișnuită și lucrați cu ea. În Academia de Științe de Stat, astfel de sarcini sunt adesea întâlnite.

Aplicarea formulei pentru al n-lea termen al unei progresii aritmetice.

Mai întâi, să ne uităm la aplicarea directă a formulei. La sfârșitul lecției anterioare a apărut o problemă:

Este dată o progresie aritmetică (a n). Găsiți un 121 dacă a 1 =3 și d=1/6.

Această problemă poate fi rezolvată fără formule, pur și simplu pe baza semnificației unei progresii aritmetice. Adăugați și adăugați... O oră sau două.)

Și conform formulei, soluția va dura mai puțin de un minut. Puteți să-l cronometrați.) Să decidem.

Condițiile oferă toate datele pentru utilizarea formulei: a 1 =3, d=1/6. Rămâne să ne dăm seama ce este egal n. Nici o problemă! Trebuie să găsim un 121. Deci scriem:

Vă rugam să acordați atentie! În loc de index n a apărut un anumit număr: 121. Ceea ce este destul de logic.) Ne interesează membrul progresiei aritmetice. numărul o sută douăzeci şi unu. Acesta va fi al nostru n. Acesta este sensul n= 121 vom înlocui în continuare în formulă, între paranteze. Înlocuim toate numerele în formulă și calculăm:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

Asta este. La fel de repede s-ar putea găsi termenul cinci sute al zecelea, iar o mie și al treilea, oricare. punem in schimb n numărul dorit în indexul literei " A"și între paranteze și numărăm.

Permiteți-mi să vă reamintesc ideea: această formulă vă permite să găsiți orice termen de progresie aritmetică CU NUMĂRUL LUI " n" .

Să rezolvăm problema într-un mod mai viclean. Să întâlnim următoarea problemă:

Aflați primul termen al progresiei aritmetice (a n), dacă a 17 =-2; d=-0,5.

Dacă aveți dificultăți, vă spun primul pas. Scrieți formula pentru al n-lea termen al unei progresii aritmetice! Da Da. Scrieți cu mâinile, chiar în caiet:

a n = a 1 + (n-1)d

Și acum, privind literele formulei, înțelegem ce date avem și ce lipsește? Disponibil d=-0,5, există un al șaptesprezecelea membru... Asta e? Dacă crezi că asta este, atunci nu vei rezolva problema, da...

Mai avem un număr n! In conditie a 17 =-2 ascuns doi parametri. Aceasta este atât valoarea celui de-al șaptesprezecelea termen (-2), cât și numărul său (17). Acestea. n=17. Acest „fleeac” alunecă adesea pe lângă cap, iar fără el, (fără „fleeac”, nu cap!) problema nu poate fi rezolvată. Deși... și fără cap.)

Acum putem pur și simplu să substituim datele noastre în formula:

a 17 = a 1 + (17-1)·(-0,5)

O da, un 17știm că este -2. Bine, hai să înlocuim:

-2 = a 1 + (17-1)·(-0,5)

Asta e practic tot. Rămâne să exprimăm primul termen al progresiei aritmetice din formulă și să-l calculăm. Raspunsul va fi: a 1 = 6.

Această tehnică - scrierea unei formule și pur și simplu înlocuirea datelor cunoscute - este de mare ajutor în sarcini simple. Ei bine, desigur, trebuie să poți exprima o variabilă dintr-o formulă, dar ce să faci!? Fără această abilitate, matematica nu poate fi studiată deloc...

Un alt puzzle popular:

Aflați diferența progresiei aritmetice (a n), dacă a 1 =2; a 15 =12.

Ce facem? Vei fi surprins, noi scriem formula!)

a n = a 1 + (n-1)d

Să luăm în considerare ceea ce știm: a 1 =2; a 15 =12; și (voi evidenția în special!) n=15. Simțiți-vă liber să înlocuiți acest lucru în formula:

12=2 + (15-1)d

Facem aritmetica.)

12=2 + 14d

d=10/14 = 5/7

Acesta este răspunsul corect.

Deci, sarcinile pentru un n, un 1Și d hotărât. Tot ce rămâne este să înveți cum să găsești numărul:

Numărul 99 este un membru al progresiei aritmetice (a n), unde a 1 =12; d=3. Găsiți numărul acestui membru.

Înlocuim cantitățile cunoscute de noi în formula celui de-al n-lea termen:

a n = 12 + (n-1) 3

La prima vedere, există două cantități necunoscute aici: un n și n. Dar un n- acesta este un membru al progresiei cu un număr n...Și îl cunoaștem pe acest membru al progresiei! Este 99. Nu-i știm numărul. n, Deci acest număr este ceea ce trebuie să găsiți. Inlocuim termenul progresiei 99 in formula:

99 = 12 + (n-1) 3

Exprimăm din formulă n, noi gândim. Primim raspunsul: n=30.

Și acum o problemă pe același subiect, dar mai creativ):

Determinați dacă numărul 117 este membru al progresiei aritmetice (a n):

-3,6; -2,4; -1,2 ...

Să scriem din nou formula. Ce, nu există parametri? Hm... De ce ni se dau ochi?) Vedem primul termen al progresiei? V-om vedea. Acesta este -3,6. Puteți scrie în siguranță: a 1 = -3,6. Diferență d Poți spune din serial? Este ușor dacă știi care este diferența unei progresii aritmetice:

d = -2,4 - (-3,6) = 1,2

Deci, am făcut cel mai simplu lucru. Rămâne să ne ocupăm de numărul necunoscut n iar numărul de neînțeles 117. În problema anterioară, cel puțin se știa că era dat termenul progresiei. Dar aici nici nu știm... Ce să facem!? Ei bine, cum să fii, cum să fii... Porniți-vă abilitățile creative!)

Noi presupune că 117 este, până la urmă, un membru al progresiei noastre. Cu un număr necunoscut n. Și, la fel ca în problema anterioară, să încercăm să găsim acest număr. Acestea. scriem formula (da, da!)) și înlocuim numerele noastre:

117 = -3,6 + (n-1) 1,2

Din nou exprimăm din formulăn, numărăm și obținem:

Hopa! Numărul s-a dovedit fracționat! O sută și jumătate. Și numere fracționale în progresii nu poate fi. Ce concluzie putem trage? Da! Numărul 117 nu este membru al progresiei noastre. Este undeva între termenii o sută și primul și o sută și al doilea. Dacă numărul s-a dovedit natural, adică este un întreg pozitiv, atunci numărul ar fi un membru al progresiei cu numărul găsit. Și în cazul nostru, răspunsul la problemă va fi: Nu.

O sarcină bazată pe o versiune reală a GIA:

Progresia aritmetică este dată de condiția:

a n = -4 + 6,8n

Găsiți primul și al zecelea termen al progresiei.

Aici progresia este stabilită într-un mod neobișnuit. Un fel de formulă... Se întâmplă.) Cu toate acestea, această formulă (cum am scris mai sus) - de asemenea formula pentru al n-lea termen al unei progresii aritmetice! Ea permite, de asemenea găsiți orice membru al progresiei după numărul său.

Căutăm primul membru. Cel care gândește. că primul termen este minus patru este fatal greșit!) Deoarece formula din problemă este modificată. Primul termen al progresiei aritmetice în el ascuns. Este în regulă, îl vom găsi acum.)

La fel ca în problemele anterioare, înlocuim n=1în această formulă:

a 1 = -4 + 6,8 1 = 2,8

Aici! Primul termen este 2,8, nu -4!

Căutăm al zecelea termen în același mod:

a 10 = -4 + 6,8 10 = 64

Asta este.

Și acum, pentru cei care au citit aceste rânduri, bonusul promis.)

Să presupunem că, într-o situație dificilă de luptă a examenului de stat sau a examenului unificat de stat, ați uitat formula utilă pentru al n-lea termen al unei progresii aritmetice. Îmi amintesc ceva, dar cumva nesigur... Or n acolo, sau n+1 sau n-1... Cum sa fii!?

Calm! Această formulă este ușor de obținut. Nu este foarte strict, dar cu siguranță este suficient pentru încredere și pentru decizia corectă!) Pentru a trage o concluzie, este suficient să vă amintiți semnificația elementară a unei progresii aritmetice și să aveți câteva minute de timp. Trebuie doar să desenezi o imagine. Pentru claritate.

Desenați o linie numerică și marcați-o pe prima. al doilea, al treilea etc. membrii. Și notăm diferența dîntre membri. Ca aceasta:

Ne uităm la imagine și ne gândim: ce înseamnă al doilea termen? Al doilea unu d:

A 2 =a 1 + 1 d

Care este al treilea termen? Al treilea termenul este egal cu primul termen plus Două d.

A 3 =a 1 + 2 d

Ai inteles? Nu degeaba evidențiez câteva cuvinte cu caractere aldine. Bine, încă un pas).

Care este al patrulea termen? Al patrulea termenul este egal cu primul termen plus Trei d.

A 4 =a 1 + 3 d

Este timpul să ne dăm seama că numărul de lacune, adică. d, Mereu cu unul mai puțin decât numărul membrului pe care îl căutați n. Adică la număr n, numărul de spații voi n-1. Prin urmare, formula va fi (fără variații!):

a n = a 1 + (n-1)d

În general, imaginile vizuale sunt de mare ajutor în rezolvarea multor probleme de matematică. Nu neglija pozele. Dar dacă este dificil să desenezi o imagine, atunci... doar o formulă!) În plus, formula celui de-al n-lea termen vă permite să conectați întregul arsenal puternic al matematicii la soluție - ecuații, inegalități, sisteme etc. Nu poți introduce o imagine în ecuație...

Sarcini pentru soluție independentă.

A încălzi:

1. În progresia aritmetică (a n) a 2 =3; a 5 =5,1. Găsiți un 3.

Sugestie: conform imaginii, problema poate fi rezolvată în 20 de secunde... Conform formulei, se dovedește mai dificil. Dar pentru stăpânirea formulei, este mai util.) În Secțiunea 555, această problemă este rezolvată folosind atât imaginea, cât și formula. Simte diferenta!)

Și aceasta nu mai este o încălzire.)

2. În progresia aritmetică (a n) a 85 =19,1; a 236 =49, 3. Aflați un 3 .

Ce, nu vrei să faci o imagine?) Desigur! Mai bine dupa formula, da...

3. Progresia aritmetică este dată de condiția:a 1 = -5,5; a n+1 = a n +0,5. Găsiți termenul o sută douăzeci și cinci al acestei progresii.

În această sarcină, progresia este specificată în mod recurent. Dar numărând până la al o sută douăzeci și cinci de mandat... Nu toată lumea poate face o asemenea ispravă.) Dar formula pentru al n-lea termen este în puterea tuturor!

4. Având în vedere o progresie aritmetică (a n):

-148; -143,8; -139,6; -135,4, .....

Aflați numărul celui mai mic termen pozitiv al progresiei.

5. Conform condițiilor sarcinii 4, găsiți suma celor mai mici termeni pozitivi și cei mai mari negativi ai progresiei.

6. Produsul termenilor al cincilea și al doisprezecelea al unei progresii aritmetice crescătoare este -2,5, iar suma celor trei și al unsprezecelea termeni este zero. Găsiți un 14.

Nu este cea mai ușoară sarcină, da...) Metoda „degetului” nu va funcționa aici. Va trebui să scrieți formule și să rezolvați ecuații.

Răspunsuri (în dezordine):

3,7; 3,5; 2,2; 37; 2,7; 56,5

S-a întâmplat? E dragut!)

Nu merge totul? Se întâmplă. Apropo, există un punct subtil în ultima sarcină. Va fi necesară atenție când citiți problema. Și logica.

Soluția tuturor acestor probleme este discutată în detaliu în Secțiunea 555. Și elementul de fantezie pentru al patrulea și punctul subtil pentru al șaselea și abordări generale pentru rezolvarea oricăror probleme care implică formula celui de-al n-lea termen - totul este descris. Vă recomand.

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Să învățăm - cu interes!)

Vă puteți familiariza cu funcțiile și derivatele.



Vă recomandăm să citiți

Top