How to find sn in arithmetic progression. Arithmetic progression

diets 14.10.2019
diets

Yes, yes: arithmetic progression is not a toy for you :)

Well, friends, if you are reading this text, then the internal cap evidence tells me that you still do not know what an arithmetic progression is, but you really (no, like this: SOOOOO!) want to know. Therefore, I will not torment you with long introductions and will immediately get down to business.

To start, a couple of examples. Consider several sets of numbers:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

What do all these sets have in common? At first glance, nothing. But actually there is something. Namely: each next element differs from the previous one by the same number.

Judge for yourself. The first set is just consecutive numbers, each one more than the previous one. In the second case, the difference between adjacent numbers is already equal to five, but this difference is still constant. In the third case, there are roots in general. However, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, while $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, i.e. in which case each next element simply increases by $\sqrt(2)$ (and don't be scared that this number is irrational).

So: all such sequences are just called arithmetic progressions. Let's give a strict definition:

Definition. A sequence of numbers in which each next differs from the previous one by exactly the same amount is called an arithmetic progression. The very amount by which the numbers differ is called the progression difference and is most often denoted by the letter $d$.

Notation: $\left(((a)_(n)) \right)$ is the progression itself, $d$ is its difference.

And just a couple of important remarks. First, progression is considered only orderly sequence of numbers: they are allowed to be read strictly in the order in which they are written - and nothing else. You can't rearrange or swap numbers.

Secondly, the sequence itself can be either finite or infinite. For example, the set (1; 2; 3) is obviously a finite arithmetic progression. But if you write something like (1; 2; 3; 4; ...) - this is already an infinite progression. The ellipsis after the four, as it were, hints that quite a lot of numbers go further. Infinitely many, for example. :)

I would also like to note that progressions are increasing and decreasing. We have already seen increasing ones - the same set (1; 2; 3; 4; ...). Here are examples of decreasing progressions:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

OK OK: last example may seem overly complicated. But the rest, I think, you understand. Therefore, we introduce new definitions:

Definition. An arithmetic progression is called:

  1. increasing if each next element is greater than the previous one;
  2. decreasing, if, on the contrary, each subsequent element is less than the previous one.

In addition, there are so-called "stationary" sequences - they consist of the same repeating number. For example, (3; 3; 3; ...).

Only one question remains: how to distinguish an increasing progression from a decreasing one? Fortunately, everything here depends only on the sign of the number $d$, i.e. progression differences:

  1. If $d \gt 0$, then the progression is increasing;
  2. If $d \lt 0$, then the progression is obviously decreasing;
  3. Finally, there is the case $d=0$, in which case the entire progression reduces to the stationary sequence same numbers: (1; 1; 1; 1; ...) etc.

Let's try to calculate the difference $d$ for the three decreasing progressions above. To do this, it is enough to take any two adjacent elements (for example, the first and second) and subtract from the number on the right, the number on the left. It will look like this:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

As you can see, in all three cases the difference really turned out to be negative. And now that we have more or less figured out the definitions, it's time to figure out how progressions are described and what properties they have.

Members of the progression and the recurrent formula

Since the elements of our sequences cannot be interchanged, they can be numbered:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Individual elements of this set are called members of the progression. They are indicated in this way with the help of a number: the first member, the second member, and so on.

In addition, as we already know, neighboring members of the progression are related by the formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

In short, to find the $n$th term of the progression, you need to know the $n-1$th term and the difference $d$. Such a formula is called recurrent, because with its help you can find any number, only knowing the previous one (and in fact, all the previous ones). This is very inconvenient, so there is a more tricky formula that reduces any calculation to the first term and the difference:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

You have probably come across this formula before. They like to give it in all sorts of reference books and reshebniks. And in any sensible textbook on mathematics, it is one of the first.

However, I suggest you practice a little.

Task number 1. Write down the first three terms of the arithmetic progression $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$.

Solution. So, we know the first term $((a)_(1))=8$ and the progression difference $d=-5$. Let's use the formula just given and substitute $n=1$, $n=2$ and $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Answer: (8; 3; -2)

That's all! Note that our progression is decreasing.

Of course, $n=1$ could not have been substituted - we already know the first term. However, by substituting the unit, we made sure that even for the first term our formula works. In other cases, everything came down to banal arithmetic.

Task number 2. Write out the first three terms of an arithmetic progression if its seventh term is −40 and its seventeenth term is −50.

Solution. We write the condition of the problem in the usual terms:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \right.\]

I put the sign of the system because these requirements must be met simultaneously. And now we note that if we subtract the first equation from the second equation (we have the right to do this, because we have a system), we get this:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Just like that, we found the progression difference! It remains to substitute the found number in any of the equations of the system. For example, in the first:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Now, knowing the first term and the difference, it remains to find the second and third terms:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Ready! Problem solved.

Answer: (-34; -35; -36)

Notice a curious property of the progression that we discovered: if we take the $n$th and $m$th terms and subtract them from each other, we get the difference of the progression multiplied by the number $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simple but very useful property, which you definitely need to know - with its help you can significantly speed up the solution of many problems in progressions. Here is a prime example of this:

Task number 3. The fifth term of the arithmetic progression is 8.4, and its tenth term is 14.4. Find the fifteenth term of this progression.

Solution. Since $((a)_(5))=8.4$, $((a)_(10))=14.4$, and we need to find $((a)_(15))$, we note following:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

But by condition $((a)_(10))-((a)_(5))=14.4-8.4=6$, so $5d=6$, whence we have:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Answer: 20.4

That's all! We did not need to compose any systems of equations and calculate the first term and the difference - everything was decided in just a couple of lines.

Now let's consider another type of problem - the search for negative and positive members of the progression. It is no secret that if the progression increases, while its first term is negative, then sooner or later positive terms will appear in it. And vice versa: the terms of a decreasing progression will sooner or later become negative.

At the same time, it is far from always possible to find this moment “on the forehead”, sequentially sorting through the elements. Often, problems are designed in such a way that without knowing the formulas, calculations would take several sheets - we would just fall asleep until we found the answer. Therefore, we will try to solve these problems in a faster way.

Task number 4. How many negative terms in an arithmetic progression -38.5; -35.8; …?

Solution. So, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, from which we immediately find the difference:

Note that the difference is positive, so the progression is increasing. The first term is negative, so indeed at some point we will stumble upon positive numbers. The only question is when this will happen.

Let's try to find out: how long (i.e., up to what natural number $n$) the negativity of the terms is preserved:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

The last line needs clarification. So we know that $n \lt 15\frac(7)(27)$. On the other hand, only integer values ​​of the number will suit us (moreover: $n\in \mathbb(N)$), so the largest allowable number is precisely $n=15$, and in no case 16.

Task number 5. In arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Find the number of the first positive term of this progression.

This would be exactly the same problem as the previous one, but we don't know $((a)_(1))$. But the neighboring terms are known: $((a)_(5))$ and $((a)_(6))$, so we can easily find the progression difference:

In addition, let's try to express the fifth term in terms of the first and the difference using the standard formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Now we proceed by analogy with the previous problem. We find out at what point in our sequence positive numbers will appear:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

The minimum integer solution of this inequality is the number 56.

Please note that in the last task everything was reduced to strict inequality, so the option $n=55$ will not suit us.

Now that we have learned how to solve simple problems, let's move on to more complex ones. But first, let's learn another very useful property of arithmetic progressions, which will save us a lot of time and unequal cells in the future. :)

Arithmetic mean and equal indents

Consider several consecutive terms of the increasing arithmetic progression $\left(((a)_(n)) \right)$. Let's try to mark them on a number line:

Arithmetic progression members on the number line

I specifically noted the arbitrary members $((a)_(n-3)),...,((a)_(n+3))$, and not any $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Because the rule, which I will now tell you, works the same for any "segments".

And the rule is very simple. Let's remember the recursive formula and write it down for all marked members:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

However, these equalities can be rewritten differently:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, so what? But the fact that the terms $((a)_(n-1))$ and $((a)_(n+1))$ lie at the same distance from $((a)_(n)) $. And this distance is equal to $d$. The same can be said about the terms $((a)_(n-2))$ and $((a)_(n+2))$ - they are also removed from $((a)_(n))$ by the same distance equal to $2d$. You can continue indefinitely, but the picture illustrates the meaning well


The members of the progression lie at the same distance from the center

What does this mean for us? This means that you can find $((a)_(n))$ if the neighboring numbers are known:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

We have deduced a magnificent statement: each member of an arithmetic progression is equal to the arithmetic mean of the neighboring members! Moreover, we can deviate from our $((a)_(n))$ to the left and to the right not by one step, but by $k$ steps — and still the formula will be correct:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Those. we can easily find some $((a)_(150))$ if we know $((a)_(100))$ and $((a)_(200))$, because $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. At first glance, it may seem that this fact does not give us anything useful. However, in practice, many tasks are specially "sharpened" for the use of the arithmetic mean. Take a look:

Task number 6. Find all values ​​of $x$ such that the numbers $-6((x)^(2))$, $x+1$ and $14+4((x)^(2))$ are consecutive members of an arithmetic progression (in specified order).

Solution. Since these numbers are members of a progression, the arithmetic mean condition is satisfied for them: the central element $x+1$ can be expressed in terms of neighboring elements:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

It turned out classic quadratic equation. Its roots: $x=2$ and $x=-3$ are the answers.

Answer: -3; 2.

Task number 7. Find the values ​​of $$ such that the numbers $-1;4-3;(()^(2))+1$ form an arithmetic progression (in that order).

Solution. Again, we express the middle term in terms of the arithmetic mean of neighboring terms:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Another quadratic equation. And again two roots: $x=6$ and $x=1$.

Answer: 1; 6.

If in the process of solving a problem you get some brutal numbers, or you are not completely sure of the correctness of the answers found, then there is a wonderful trick that allows you to check: did we solve the problem correctly?

Let's say in problem 6 we got answers -3 and 2. How can we check that these answers are correct? Let's just plug them into the original condition and see what happens. Let me remind you that we have three numbers ($-6(()^(2))$, $+1$ and $14+4(()^(2))$), which should form an arithmetic progression. Substitute $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

We got the numbers -54; −2; 50 that differ by 52 is undoubtedly an arithmetic progression. The same thing happens for $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Again a progression, but with a difference of 27. Thus, the problem is solved correctly. Those who wish can check the second task on their own, but I’ll say right away: everything is correct there too.

In general, while solving the last tasks, we stumbled upon another interesting fact, which also needs to be remembered:

If three numbers are such that the second is the average of the first and last, then these numbers form an arithmetic progression.

In the future, understanding this statement will allow us to literally “construct” the necessary progressions based on the condition of the problem. But before we engage in such a "construction", we should pay attention to one more fact, which directly follows from what has already been considered.

Grouping and sum of elements

Let's go back to the number line again. We note there several members of the progression, between which, perhaps. worth a lot of other members:

6 elements marked on the number line

Let's try to express the "left tail" in terms of $((a)_(n))$ and $d$, and the "right tail" in terms of $((a)_(k))$ and $d$. It's very simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Now note that the following sums are equal:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Simply put, if we consider as a start two elements of the progression, which in total are equal to some number $S$, and then we start stepping from these elements in opposite directions (towards each other or vice versa to move away), then the sums of the elements that we will stumble upon will also be equal$S$. This can be best represented graphically:


Same indents give equal sums

Understanding this fact will allow us to solve problems of a fundamentally higher level of complexity than those that we considered above. For example, these:

Task number 8. Determine the difference of an arithmetic progression in which the first term is 66, and the product of the second and twelfth terms is the smallest possible.

Solution. Let's write down everything we know:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

So, we do not know the difference of the progression $d$. Actually, the whole solution will be built around the difference, since the product $((a)_(2))\cdot ((a)_(12))$ can be rewritten as follows:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

For those in the tank: I've taken the common factor 11 out of the second bracket. Thus, the desired product is a quadratic function with respect to the variable $d$. Therefore, consider the function $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - its graph will be a parabola with branches up, because if we open the brackets, we get:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

As you can see, the coefficient with the highest term is 11 - this is a positive number, so we are really dealing with a parabola with branches up:


schedule quadratic function- parabola

Please note: this parabola takes its minimum value at its vertex with the abscissa $((d)_(0))$. Of course, we can calculate this abscissa according to the standard scheme (there is a formula $((d)_(0))=(-b)/(2a)\;$), but it would be much more reasonable to note that the desired vertex lies on the axis symmetry of the parabola, so the point $((d)_(0))$ is equidistant from the roots of the equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

That is why I was in no hurry to open the brackets: in the original form, the roots were very, very easy to find. Therefore, the abscissa is equal to the mean arithmetic numbers-66 and -6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

What gives us the discovered number? With it, the required product takes the smallest value (by the way, we did not calculate $((y)_(\min ))$ - this is not required of us). At the same time, this number is the difference of the initial progression, i.e. we found the answer. :)

Answer: -36

Task number 9. Insert three numbers between the numbers $-\frac(1)(2)$ and $-\frac(1)(6)$ so that together with the given numbers they form an arithmetic progression.

Solution. In fact, we need to make a sequence of five numbers, with the first and last number already known. Denote the missing numbers by the variables $x$, $y$ and $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Note that the number $y$ is the "middle" of our sequence - it is equidistant from the numbers $x$ and $z$, and from the numbers $-\frac(1)(2)$ and $-\frac(1)( 6)$. And if from the numbers $x$ and $z$ we are in this moment we cannot get $y$, then the situation is different with the ends of the progression. Remember the arithmetic mean:

Now, knowing $y$, we will find the remaining numbers. Note that $x$ lies between $-\frac(1)(2)$ and $y=-\frac(1)(3)$ just found. That's why

Arguing similarly, we find the remaining number:

Ready! We found all three numbers. Let's write them down in the answer in the order in which they should be inserted between the original numbers.

Answer: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Task number 10. Between the numbers 2 and 42, insert several numbers that, together with the given numbers, form an arithmetic progression, if it is known that the sum of the first, second, and last of the inserted numbers is 56.

Solution. An even more difficult task, which, however, is solved in the same way as the previous ones - through the arithmetic mean. The problem is that we don't know exactly how many numbers to insert. Therefore, for definiteness, we assume that after inserting there will be exactly $n$ numbers, and the first of them is 2, and the last is 42. In this case, the desired arithmetic progression can be represented as:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Note, however, that the numbers $((a)_(2))$ and $((a)_(n-1))$ are obtained from the numbers 2 and 42 standing at the edges by one step towards each other, i.e. . to the center of the sequence. And this means that

\[((a)_(2))+((a)_(n-1))=2+42=44\]

But then the above expression can be rewritten like this:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Knowing $((a)_(3))$ and $((a)_(1))$, we can easily find the progression difference:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

It remains only to find the remaining members:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Thus, already at the 9th step we will come to the left end of the sequence - the number 42. In total, only 7 numbers had to be inserted: 7; 12; 17; 22; 27; 32; 37.

Answer: 7; 12; 17; 22; 27; 32; 37

Text tasks with progressions

In conclusion, I would like to consider a couple of relatively simple problems. Well, as simple ones: for most students who study mathematics at school and have not read what is written above, these tasks may seem like a gesture. Nevertheless, it is precisely such tasks that come across in the OGE and the USE in mathematics, so I recommend that you familiarize yourself with them.

Task number 11. The team produced 62 parts in January, and in each next month produced 14 parts more than in the previous one. How many parts did the brigade produce in November?

Solution. Obviously, the number of parts, painted by month, will be an increasing arithmetic progression. And:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November is the 11th month of the year, so we need to find $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Therefore, 202 parts will be manufactured in November.

Task number 12. The bookbinding workshop bound 216 books in January, and each month it bound 4 more books than the previous month. How many books did the workshop bind in December?

Solution. All the same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

December is the last, 12th month of the year, so we are looking for $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

This is the answer - 260 books will be bound in December.

Well, if you have read this far, I hasten to congratulate you: you have successfully completed the “young fighter course” in arithmetic progressions. We can safely move on to the next lesson, where we will study the progression sum formula, as well as important and very useful consequences from it.

Before we start to decide arithmetic progression problems, consider what a number sequence is, since an arithmetic progression is a special case of a number sequence.

A numerical sequence is a numerical set, each element of which has its own serial number. The elements of this set are called members of the sequence. The ordinal number of a sequence element is indicated by an index:

The first element of the sequence;

The fifth element of the sequence;

- "nth" element of the sequence, i.e. the element "standing in the queue" at number n.

There is a dependency between the value of a sequence element and its ordinal number. Therefore, we can consider a sequence as a function whose argument is the ordinal number of an element of the sequence. In other words, one can say that the sequence is a function of the natural argument:

The sequence can be specified in three ways:

1 . The sequence can be specified using a table. In this case, we simply set the value of each member of the sequence.

For example, Someone decided to do personal time management, and to begin with, to calculate how much time he spends on VKontakte during the week. By writing the time in a table, he will get a sequence consisting of seven elements:

The first line of the table contains the number of the day of the week, the second - the time in minutes. We see that, that is, on Monday Someone spent 125 minutes on VKontakte, that is, on Thursday - 248 minutes, and, that is, on Friday, only 15.

2 . The sequence can be specified using the nth member formula.

In this case, the dependence of the value of a sequence element on its number is expressed directly as a formula.

For example, if , then

To find the value of a sequence element with a given number, we substitute the element number into the formula for the nth member.

We do the same if we need to find the value of a function if the value of the argument is known. We substitute the value of the argument instead in the equation of the function:

If, for example, , then

Once again, I note that in a sequence, in contrast to an arbitrary numeric function, only a natural number can be an argument.

3 . The sequence can be specified using a formula that expresses the dependence of the value of the member of the sequence with number n on the value of the previous members. In this case, it is not enough for us to know only the number of a sequence member in order to find its value. We need to specify the first member or first few members of the sequence.

For example, consider the sequence ,

We can find the values ​​of the members of a sequence in sequence, starting from the third:

That is, each time to find the value of the nth member of the sequence, we return to the previous two. This way of sequencing is called recurrent, from the Latin word recurro- come back.

Now we can define an arithmetic progression. An arithmetic progression is a simple special case of a numerical sequence.

Arithmetic progression is called a numerical sequence, each member of which, starting from the second, is equal to the previous one, added with the same number.


The number is called the difference of an arithmetic progression. The difference of an arithmetic progression can be positive, negative, or zero.

If title="(!LANG:d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} increasing.

For example, 2; 5; eight; eleven;...

If , then each term of the arithmetic progression is less than the previous one, and the progression is waning.

For example, 2; -one; -four; -7;...

If , then all members of the progression are equal to the same number, and the progression is stationary.

For example, 2;2;2;2;...

The main property of an arithmetic progression:

Let's look at the picture.

We see that

, and at the same time

Adding these two equalities, we get:

.

Divide both sides of the equation by 2:

So, each member of the arithmetic progression, starting from the second, is equal to the arithmetic mean of two neighboring ones:

Moreover, since

, and at the same time

, then

, and hence

Each member of the arithmetic progression starting with title="(!LANG:k>l">, равен среднему арифметическому двух равноотстоящих. !}

th member formula.

We see that for the members of the arithmetic progression, the following relations hold:

and finally

We got formula of the nth term.

IMPORTANT! Any member of an arithmetic progression can be expressed in terms of and . Knowing the first term and the difference of an arithmetic progression, you can find any of its members.

The sum of n members of an arithmetic progression.

In an arbitrary arithmetic progression, the sums of terms equally spaced from the extreme ones are equal to each other:

Consider an arithmetic progression with n members. Let the sum of n members of this progression be equal to .

Arrange the terms of the progression first in ascending order of numbers, and then in descending order:

Let's pair it up:

The sum in each parenthesis is , the number of pairs is n.

We get:

So, the sum of n members of an arithmetic progression can be found using the formulas:

Consider solving arithmetic progression problems.

1 . The sequence is given by the formula of the nth term: . Prove that this sequence is an arithmetic progression.

Let us prove that the difference between two adjacent members of the sequence is equal to the same number.

We have obtained that the difference of two adjacent members of the sequence does not depend on their number and is a constant. Therefore, by definition, this sequence is an arithmetic progression.

2 . Given an arithmetic progression -31; -27;...

a) Find the 31 terms of the progression.

b) Determine if the number 41 is included in this progression.

a) We see that ;

Let's write down the formula for the nth term for our progression.

In general

In our case , that's why

Online calculator.
Arithmetic progression solution.
Given: a n , d, n
Find: a 1

This math program finds \(a_1\) of an arithmetic progression based on user-specified numbers \(a_n, d \) and \(n \).
The numbers \(a_n\) and \(d \) can be specified not only as integers, but also as fractions. Moreover, a fractional number can be entered as a decimal fraction (\(2.5 \)) and as an ordinary fraction (\(-5\frac(2)(7) \)).

The program not only gives the answer to the problem, but also displays the process of finding a solution.

This online calculator can be useful for high school students general education schools in preparation for control work and exams, when testing knowledge before the exam, parents to control the solution of many problems in mathematics and algebra. Or maybe it's too expensive for you to hire a tutor or buy new textbooks? Or do you just want to get it done as soon as possible? homework math or algebra? In this case, you can also use our programs with a detailed solution.

In this way, you can conduct your own training and/or the training of your younger brothers or sisters, while the level of education in the field of tasks to be solved is increased.

If you are not familiar with the rules for entering numbers, we recommend that you familiarize yourself with them.

Rules for entering numbers

The numbers \(a_n\) and \(d \) can be specified not only as integers, but also as fractions.
The number \(n\) can only be a positive integer.

Rules for entering decimal fractions.
The integer and fractional parts in decimal fractions can be separated by either a dot or a comma.
For example, you can enter decimals so 2.5 or so 2.5

Rules for entering ordinary fractions.
Only a whole number can act as the numerator, denominator and integer part of a fraction.

The denominator cannot be negative.

When entering a numerical fraction, the numerator is separated from the denominator by a division sign: /
Input:
Result: \(-\frac(2)(3) \)

whole part separated from the fraction by an ampersand: &
Input:
Result: \(-1\frac(2)(3) \)

Enter numbers a n , d, n


Find a 1

It was found that some scripts needed to solve this task were not loaded, and the program may not work.
You may have AdBlock enabled.
In this case, disable it and refresh the page.

You have JavaScript disabled in your browser.
JavaScript must be enabled for the solution to appear.
Here are instructions on how to enable JavaScript in your browser.

Because There are a lot of people who want to solve the problem, your request is queued.
After a few seconds, the solution will appear below.
Wait, please sec...


If you noticed an error in the solution, then you can write about it in the Feedback Form .
Do not forget indicate which task you decide what enter in the fields.



Our games, puzzles, emulators:

A bit of theory.

Numeric sequence

Numbering is often used in everyday practice. various items to indicate their order. For example, the houses on each street are numbered. In the library, reader's subscriptions are numbered and then arranged in the order of the assigned numbers in special file cabinets.

In a savings bank, by the number of the depositor's personal account, you can easily find this account and see what kind of deposit it has. Let there be a deposit of a1 rubles on account No. 1, a deposit of a2 rubles on account No. 2, etc. It turns out numerical sequence
a 1 , a 2 , a 3 , ..., a N
where N is the number of all accounts. Here, each natural number n from 1 to N is assigned a number a n .

Mathematics also studies infinite number sequences:
a 1 , a 2 , a 3 , ..., a n , ... .
The number a 1 is called the first member of the sequence, number a 2 - the second member of the sequence, number a 3 - the third member of the sequence etc.
The number a n is called nth (nth) member of the sequence, and the natural number n is its number.

For example, in the sequence of squares of natural numbers 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... and 1 = 1 is the first member of the sequence; and n = n 2 is nth member sequences; a n+1 = (n + 1) 2 is the (n + 1)th (en plus the first) member of the sequence. Often a sequence can be specified by the formula of its nth term. For example, the formula \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) gives the sequence \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \; \frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Arithmetic progression

The length of a year is approximately 365 days. A more accurate value is \(365\frac(1)(4) \) days, so every four years an error of one day accumulates.

To account for this error, a day is added to every fourth year, and the elongated year is called a leap year.

For example, in the third millennium leap years the years are 2004, 2008, 2012, 2016, ... .

In this sequence, each member, starting from the second, is equal to the previous one, added with the same number 4. Such sequences are called arithmetic progressions.

Definition.
The numerical sequence a 1 , a 2 , a 3 , ..., a n , ... is called arithmetic progression, if for all natural n the equality
\(a_(n+1) = a_n+d, \)
where d is some number.

It follows from this formula that a n+1 - a n = d. The number d is called the difference arithmetic progression.

By definition of an arithmetic progression, we have:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
where
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), where \(n>1 \)

Thus, each member of the arithmetic progression, starting from the second, is equal to the arithmetic mean of the two members adjacent to it. This explains the name "arithmetic" progression.

Note that if a 1 and d are given, then the remaining terms of the arithmetic progression can be calculated using the recursive formula a n+1 = a n + d. In this way, it is not difficult to calculate the first few terms of the progression, however, for example, for a 100, a lot of calculations will already be required. Usually, the nth term formula is used for this. According to the definition of an arithmetic progression
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d\)
etc.
Generally,
\(a_n=a_1+(n-1)d, \)
because nth member arithmetic progression is obtained from the first term by adding (n-1) times the number d.
This formula is called formula of the nth member of an arithmetic progression.

The sum of the first n terms of an arithmetic progression

Let's find the sum of all natural numbers from 1 to 100.
We write this sum in two ways:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
We add these equalities term by term:
2S = 101 + 101 + 101 + ... + 101 + 101.
There are 100 terms in this sum.
Therefore, 2S = 101 * 100, whence S = 101 * 50 = 5050.

Consider now an arbitrary arithmetic progression
a 1 , a 2 , a 3 , ..., a n , ...
Let S n be the sum of the first n terms of this progression:
S n \u003d a 1, a 2, a 3, ..., a n
Then the sum of the first n terms of an arithmetic progression is
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Since \(a_n=a_1+(n-1)d \), then replacing a n in this formula, we get another formula for finding the sums of the first n terms of an arithmetic progression:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Books (textbooks) Abstracts of the Unified State Examination and OGE tests online Games, puzzles Construction of graphs of functions Spelling Dictionary of the Russian Language Dictionary of youth slang Directory of Russian schools Catalog of secondary schools in Russia Catalog of Russian universities List of tasks

Someone treats the word "progression" with caution, as a very complex term from the sections of higher mathematics. Meanwhile, the simplest arithmetic progression is the work of the taxi counter (where they still remain). And to understand the essence (and in mathematics there is nothing more important than “to understand the essence”) of an arithmetic sequence is not so difficult, having analyzed a few elementary concepts.

Mathematical number sequence

It is customary to call a numerical sequence a series of numbers, each of which has its own number.

and 1 is the first member of the sequence;

and 2 is the second member of the sequence;

and 7 is the seventh member of the sequence;

and n is the nth member of the sequence;

However, not any arbitrary set of figures and numbers interests us. We will focus our attention on a numerical sequence in which the value of the n-th member is related to its ordinal number by a dependence that can be clearly formulated mathematically. In other words: the numerical value of the nth number is some function of n.

a - value of a member of the numerical sequence;

n is its serial number;

f(n) is a function where the ordinal in the numeric sequence n is the argument.

Definition

An arithmetic progression is usually called a numerical sequence in which each subsequent term is greater (less) than the previous one by the same number. The formula for the nth member of an arithmetic sequence is as follows:

a n - the value of the current member of the arithmetic progression;

a n+1 - the formula of the next number;

d - difference (a certain number).

It is easy to determine that if the difference is positive (d>0), then each subsequent member of the series under consideration will be greater than the previous one, and such an arithmetic progression will be increasing.

In the graph below, it is easy to see why the number sequence is called "increasing".

In cases where the difference is negative (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

The value of the specified member

Sometimes it is necessary to determine the value of some arbitrary term a n of an arithmetic progression. You can do this by calculating successively the values ​​of all members of the arithmetic progression, from the first to the desired one. However, this way is not always acceptable if, for example, it is necessary to find the value of the five thousandth or eight millionth term. The traditional calculation will take a long time. However, a specific arithmetic progression can be investigated using certain formulas. There is also a formula for the nth term: the value of any member of an arithmetic progression can be determined as the sum of the first member of the progression with the difference of the progression, multiplied by the number of the desired member, minus one.

The formula is universal for increasing and decreasing progression.

An example of calculating the value of a given member

Let's solve the following problem of finding the value of the n-th member of an arithmetic progression.

Condition: there is an arithmetic progression with parameters:

The first member of the sequence is 3;

The difference in the number series is 1.2.

Task: it is necessary to find the value of 214 terms

Solution: to determine the value of a given member, we use the formula:

a(n) = a1 + d(n-1)

Substituting the data from the problem statement into the expression, we have:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

Answer: The 214th member of the sequence is equal to 258.6.

The advantages of this calculation method are obvious - the entire solution takes no more than 2 lines.

Sum of a given number of members

Very often, in a given arithmetic series, it is required to determine the sum of the values ​​of some of its segments. It also doesn't need to calculate the values ​​of each term and then sum them up. This method is applicable if the number of terms whose sum must be found is small. In other cases, it is more convenient to use the following formula.

The sum of the members of an arithmetic progression from 1 to n is equal to the sum of the first and nth members, multiplied by the member number n and divided by two. If in the formula the value of the n-th member is replaced by the expression from the previous paragraph of the article, we get:

Calculation example

For example, let's solve a problem with the following conditions:

The first term of the sequence is zero;

The difference is 0.5.

In the problem, it is required to determine the sum of the terms of the series from 56 to 101.

Solution. Let's use the formula for determining the sum of the progression:

s(n) = (2∙a1 + d∙(n-1))∙n/2

First, we determine the sum of the values ​​of 101 members of the progression by substituting the given conditions of our problem into the formula:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2 525

Obviously, in order to find out the sum of the terms of the progression from the 56th to the 101st, it is necessary to subtract S 55 from S 101.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

So the sum of the arithmetic progression for this example is:

s 101 - s 55 \u003d 2,525 - 742.5 \u003d 1,782.5

Example of practical application of arithmetic progression

At the end of the article, let's return to the example of the arithmetic sequence given in the first paragraph - a taximeter (taxi car meter). Let's consider such an example.

Getting into a taxi (which includes 3 km) costs 50 rubles. Each subsequent kilometer is paid at the rate of 22 rubles / km. Travel distance 30 km. Calculate the cost of the trip.

1. Let's discard the first 3 km, the price of which is included in the landing cost.

30 - 3 = 27 km.

2. Further calculation is nothing more than parsing an arithmetic number series.

The member number is the number of kilometers traveled (minus the first three).

The value of the member is the sum.

The first term in this problem will be equal to a 1 = 50 rubles.

Progression difference d = 22 p.

the number of interest to us - the value of the (27 + 1)th member of the arithmetic progression - the meter reading at the end of the 27th kilometer - 27.999 ... = 28 km.

a 28 \u003d 50 + 22 ∙ (28 - 1) \u003d 644

Calculations of calendar data for an arbitrarily long period are based on formulas describing certain numerical sequences. In astronomy, the length of the orbit is geometrically dependent on the distance of the celestial body to the luminary. In addition, various numerical series are successfully used in statistics and other applied branches of mathematics.

Another kind of number sequence is geometric

A geometric progression is characterized by a large, compared with an arithmetic, rate of change. It is no coincidence that in politics, sociology, medicine, often, in order to show the high speed of the spread of a particular phenomenon, for example, a disease during an epidemic, they say that the process develops exponentially.

The N-th member of the geometric number series differs from the previous one in that it is multiplied by some constant number - the denominator, for example, the first member is 1, the denominator is 2, respectively, then:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - the value of the current member of the geometric progression;

b n+1 - the formula of the next member of the geometric progression;

q is the denominator of a geometric progression (constant number).

If the graph of an arithmetic progression is a straight line, then the geometric one draws a slightly different picture:

As in the case of arithmetic, a geometric progression has a formula for the value of an arbitrary member. Any n-th term of a geometric progression is equal to the product of the first term and the denominator of the progression to the power of n reduced by one:

Example. We have a geometric progression with the first term equal to 3 and the denominator of the progression equal to 1.5. Find the 5th term of the progression

b 5 \u003d b 1 ∙ q (5-1) \u003d 3 ∙ 1.5 4 \u003d 15.1875

The sum of a given number of members is also calculated using a special formula. The sum of the first n members of a geometric progression is equal to the difference between the product of the nth member of the progression and its denominator and the first member of the progression, divided by the denominator reduced by one:

If b n is replaced using the formula discussed above, the value of the sum of the first n members of the considered number series will take the form:

Example. The geometric progression starts with the first term equal to 1. The denominator is set equal to 3. Let's find the sum of the first eight terms.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

What is the essence of the formula?

This formula allows you to find any BY HIS NUMBER" n" .

Of course, you need to know the first term a 1 and progression difference d, well, without these parameters, you can’t write down a specific progression.

It is not enough to memorize (or cheat) this formula. It is necessary to assimilate its essence and apply the formula in various tasks. Yes, and do not forget at the right time, yes ...) How not forget- I do not know. But how to remember If needed, I'll give you a hint. For those who master the lesson to the end.)

So, let's deal with the formula of the n-th member of an arithmetic progression.

What is a formula in general - we imagine.) What is an arithmetic progression, a member number, a progression difference - is clearly stated in the previous lesson. Take a look if you haven't read it. Everything is simple there. It remains to figure out what nth member.

The progression in general can be written as a series of numbers:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1- denotes the first term of an arithmetic progression, a 3- third member a 4- fourth, and so on. If we are interested in the fifth term, let's say we are working with a 5, if one hundred and twentieth - from a 120.

How to define in general any member of an arithmetic progression, s any number? Very simple! Like this:

a n

That's what it is n-th member of an arithmetic progression. Under the letter n all the numbers of members are hidden at once: 1, 2, 3, 4, and so on.

And what does such a record give us? Just think, instead of a number, they wrote down a letter ...

This notation gives us a powerful tool for working with arithmetic progressions. Using the notation a n, we can quickly find any member any arithmetic progression. And a bunch of tasks to solve in progression. You will see further.

In the formula of the nth member of an arithmetic progression:

a n = a 1 + (n-1)d

a 1- the first member of the arithmetic progression;

n- member number.

The formula links the key parameters of any progression: a n ; a 1 ; d and n. Around these parameters, all the puzzles revolve in progression.

The nth term formula can also be used to write a specific progression. For example, in the problem it can be said that the progression is given by the condition:

a n = 5 + (n-1) 2.

Such a problem can even confuse ... There is no series, no difference ... But, comparing the condition with the formula, it is easy to figure out that in this progression a 1 \u003d 5, and d \u003d 2.

And it can be even angrier!) If we take the same condition: a n = 5 + (n-1) 2, yes, open the brackets and give similar ones? We get a new formula:

an = 3 + 2n.

it Only not general, but for a specific progression. This is where the pitfall lies. Some people think that the first term is a three. Although in reality the first member is a five ... A little lower we will work with such a modified formula.

In tasks for progression, there is another notation - a n+1. This is, you guessed it, the "n plus the first" term of the progression. Its meaning is simple and harmless.) This is a member of the progression, the number of which is greater than the number n by one. For example, if in some problem we take for a n fifth term, then a n+1 will be the sixth member. Etc.

Most often the designation a n+1 occurs in recursive formulas. Do not be afraid of this terrible word!) This is just a way of expressing a term of an arithmetic progression through the previous one. Suppose we are given an arithmetic progression in this form, using the recurrent formula:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

The fourth - through the third, the fifth - through the fourth, and so on. And how to count immediately, say the twentieth term, a 20? But no way!) While the 19th term is not known, the 20th cannot be counted. This is the fundamental difference between the recursive formula and the formula of the nth term. Recursive works only through previous term, and the formula of the nth term - through the first and allows straightaway find any member by its number. Not counting the whole series of numbers in order.

In an arithmetic progression, a recursive formula can easily be turned into a regular one. Count a pair of consecutive terms, calculate the difference d, find, if necessary, the first term a 1, write the formula in the usual form, and work with it. In the GIA, such tasks are often found.

Application of the formula of the n-th member of an arithmetic progression.

First, let's look at the direct application of the formula. At the end of the previous lesson there was a problem:

Given an arithmetic progression (a n). Find a 121 if a 1 =3 and d=1/6.

This problem can be solved without any formulas, simply based on the meaning of the arithmetic progression. Add, yes add ... An hour or two.)

And according to the formula, the solution will take less than a minute. You can time it.) We decide.

The conditions provide all the data for using the formula: a 1 \u003d 3, d \u003d 1/6. It remains to be seen what n. No problem! We need to find a 121. Here we write:

Please pay attention! Instead of an index n a specific number appeared: 121. Which is quite logical.) We are interested in the member of the arithmetic progression number one hundred twenty one. This will be our n. It is this meaning n= 121 we will substitute further into the formula, in brackets. Substitute all the numbers in the formula and calculate:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

That's all there is to it. Just as quickly one could find the five hundred and tenth member, and the thousand and third, any. We put instead n the desired number in the index of the letter " a" and in brackets, and we consider.

Let me remind you the essence: this formula allows you to find any term of an arithmetic progression BY HIS NUMBER" n" .

Let's solve the problem smarter. Let's say we have the following problem:

Find the first term of the arithmetic progression (a n) if a 17 =-2; d=-0.5.

If you have any difficulties, I will suggest the first step. Write down the formula for the nth term of an arithmetic progression! Yes Yes. Hand write, right in your notebook:

a n = a 1 + (n-1)d

And now, looking at the letters of the formula, we understand what data we have and what is missing? Available d=-0.5, there is a seventeenth member ... Everything? If you think that's all, then you can't solve the problem, yes ...

We also have a number n! In the condition a 17 =-2 hidden two options. This is both the value of the seventeenth member (-2) and its number (17). Those. n=17. This "little thing" often slips past the head, and without it, (without the "little thing", not the head!) The problem cannot be solved. Although ... and without a head too.)

Now we can just stupidly substitute our data into the formula:

a 17 \u003d a 1 + (17-1) (-0.5)

Oh yes, a 17 we know it's -2. Okay, let's put it in:

-2 \u003d a 1 + (17-1) (-0.5)

That, in essence, is all. It remains to express the first term of the arithmetic progression from the formula, and calculate. You get the answer: a 1 = 6.

Such a technique - writing a formula and simply substituting known data - helps a lot in simple tasks. Well, you must, of course, be able to express a variable from a formula, but what to do!? Without this skill, mathematics can not be studied at all ...

Another popular problem:

Find the difference of the arithmetic progression (a n) if a 1 =2; a 15 =12.

What are we doing? You will be surprised, we write the formula!)

a n = a 1 + (n-1)d

Consider what we know: a 1 =2; a 15 =12; and (special highlight!) n=15. Feel free to substitute in the formula:

12=2 + (15-1)d

Let's do the arithmetic.)

12=2 + 14d

d=10/14 = 5/7

This is the correct answer.

So, tasks a n , a 1 and d decided. It remains to learn how to find the number:

The number 99 is a member of an arithmetic progression (a n), where a 1 =12; d=3. Find the number of this member.

We substitute the known quantities into the formula of the nth term:

a n = 12 + (n-1) 3

At first glance, there are two unknown quantities here: a n and n. But a n is some member of the progression with the number n... And this member of the progression we know! It's 99. We don't know his number. n, so this number also needs to be found. Substitute the progression term 99 into the formula:

99 = 12 + (n-1) 3

We express from the formula n, we think. We get the answer: n=30.

And now a problem on the same topic, but more creative):

Determine if the number 117 will be a member of an arithmetic progression (a n):

-3,6; -2,4; -1,2 ...

Let's write the formula again. What, there are no parameters? Hm... Why do we need eyes?) Do we see the first member of the progression? We see. This is -3.6. You can safely write: a 1 \u003d -3.6. Difference d can be determined from the series? It's easy if you know what the difference of an arithmetic progression is:

d = -2.4 - (-3.6) = 1.2

Yes, we did the simplest thing. It remains to deal with an unknown number n and an incomprehensible number 117. In the previous problem, at least it was known that it was the term of the progression that was given. But here we don’t even know that ... How to be!? Well, how to be, how to be... Turn on your creative abilities!)

We suppose that 117 is, after all, a member of our progression. With an unknown number n. And, just like in the previous problem, let's try to find this number. Those. we write the formula (yes-yes!)) and substitute our numbers:

117 = -3.6 + (n-1) 1.2

Again we express from the formulan, we count and get:

Oops! The number turned out fractional! One hundred and one and a half. And fractional numbers in progressions can not be. What conclusion do we draw? Yes! Number 117 is not member of our progression. It is somewhere between the 101st and 102nd members. If the number turned out to be natural, i.e. positive integer, then the number would be a member of the progression with the found number. And in our case, the answer to the problem will be: no.

Task based on a real version of the GIA:

The arithmetic progression is given by the condition:

a n \u003d -4 + 6.8n

Find the first and tenth terms of the progression.

Here the progression is set in an unusual way. Some kind of formula ... It happens.) However, this formula (as I wrote above) - also the formula of the n-th member of an arithmetic progression! She also allows find any member of the progression by its number.

We are looking for the first member. The one who thinks. that the first term is minus four, is fatally mistaken!) Because the formula in the problem is modified. The first term of an arithmetic progression in it hidden. Nothing, we'll find it now.)

Just as in the previous tasks, we substitute n=1 into this formula:

a 1 \u003d -4 + 6.8 1 \u003d 2.8

Here! The first term is 2.8, not -4!

Similarly, we are looking for the tenth term:

a 10 \u003d -4 + 6.8 10 \u003d 64

That's all there is to it.

And now, for those who have read up to these lines, the promised bonus.)

Suppose, in a difficult combat situation of the GIA or the Unified State Exam, you forgot the useful formula of the n-th member of an arithmetic progression. Something comes to mind, but somehow uncertainly ... Whether n there, or n+1, or n-1... How to be!?

Calm! This formula is easy to derive. Not very strict, but definitely enough for confidence and the right decision!) For the conclusion, it is enough to remember the elementary meaning of the arithmetic progression and have a couple of minutes of time. You just need to draw a picture. For clarity.

We draw a numerical axis and mark the first one on it. second, third, etc. members. And note the difference d between members. Like this:

We look at the picture and think: what is the second term equal to? Second one d:

a 2 =a 1 + 1 d

What is the third term? Third term equals first term plus two d.

a 3 =a 1 + 2 d

Do you get it? I don't put some words in bold for nothing. Okay, one more step.)

What is the fourth term? Fourth term equals first term plus three d.

a 4 =a 1 + 3 d

It's time to realize that the number of gaps, i.e. d, always one less than the number of the member you are looking for n. That is, up to the number n, number of gaps will be n-1. So, the formula will be (no options!):

a n = a 1 + (n-1)d

In general, visual pictures are very helpful in solving many problems in mathematics. Don't neglect the pictures. But if it's difficult to draw a picture, then ... only a formula!) In addition, the formula of the nth term allows you to connect the entire powerful arsenal of mathematics to the solution - equations, inequalities, systems, etc. You can't put a picture in an equation...

Tasks for independent decision.

For warm-up:

1. In arithmetic progression (a n) a 2 =3; a 5 \u003d 5.1. Find a 3 .

Hint: according to the picture, the problem is solved in 20 seconds ... According to the formula, it turns out more difficult. But for mastering the formula, it is more useful.) In Section 555, this problem is solved both by the picture and by the formula. Feel the difference!)

And this is no longer a warm-up.)

2. In arithmetic progression (a n) a 85 \u003d 19.1; a 236 =49, 3. Find a 3 .

What, reluctance to draw a picture?) Still! It's better in the formula, yes ...

3. Arithmetic progression is given by the condition:a 1 \u003d -5.5; a n+1 = a n +0.5. Find the one hundred and twenty-fifth term of this progression.

In this task, the progression is given in a recurrent way. But counting up to the one hundred and twenty-fifth term... Not everyone can do such a feat.) But the formula of the nth term is within the power of everyone!

4. Given an arithmetic progression (a n):

-148; -143,8; -139,6; -135,4, .....

Find the number of the smallest positive term of the progression.

5. According to the condition of task 4, find the sum of the smallest positive and largest negative members of the progression.

6. The product of the fifth and twelfth terms of an increasing arithmetic progression is -2.5, and the sum of the third and eleventh terms is zero. Find a 14 .

Not the easiest task, yes ...) Here the method "on the fingers" will not work. You have to write formulas and solve equations.

Answers (in disarray):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Happened? It's nice!)

Not everything works out? It happens. By the way, in the last task there is one subtle point. Attentiveness when reading the problem will be required. And logic.

The solution to all these problems is discussed in detail in Section 555. And the fantasy element for the fourth, and the subtle moment for the sixth, and general approaches for solving any problems for the formula of the nth term - everything is painted. I recommend.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

We recommend reading

Top