Физика - колебания и волны. Колебания и волны, законы и формулы Формулы по физике механические колебания волны

Семья и отношения 03.03.2024
Семья и отношения

Если посмотреть на пшеничное поле в ветреную погоду, то мы увидим, что оно «волнуется», что вдоль него что-то перемещается. Не ясно что, ведь стебли остаются на месте. Они лишь наклоняются, выпрямляются, снова наклоняются и т.д. Если взять шнур и закрепить один его конец, а другой привести в колебательное движение, то мы увидим, что вдоль шнура «бежит» волна. Если мы бросим камень в воду, то вокруг места падения камня «пойдёт круги». Эти круги – тоже волны.

Источниками волн являются колебания. Колеблются стебли растений, деформируемые ветром, колеблются частицы воды, колеблется конец шнура. А колебания, возникшие в одном месте, передаются другим частицам. То, что мы называем волной, и есть распространение колебаний от точки к точке, от частицы к частице.

Моделью образования волны в шнуре может служить цепочка шариков, имеющих массу, между которыми действует сила упругости. Вообразим, что между шариками расположены маленькие пружинки.

Пусть шарик 1 отведен вверх и отпущен. Пружинка, связывающая его с шариком 2, при этом растянется, возникнет сила упругости, которая действует не только на шарик 1, но и на шарик 2. Следовательно, начнёт колебаться и шарик 2. Это приведёт к деформации следующей пружинки, так что начнёт совершать колебания и шарик 3 и т.д.
Поскольку у всех шариков одинаковые массы и силу упругости, то все шарики будут колебаться – каждый около своего положения равновесия – с одинаковыми периодами и одинаковыми амплитудами. Однако все шарики обладают инертностью (так как у них есть масса), поэтому колебания шариков начнутся не одновременно, поскольку на изменение их скорости требуется время. Поэтому 2-я точка начнёт колебаться позже, чем 1-я, 3-я позже, чем 2-я, 4-я позже, чем 3-я и т.д.

Если наблюдать за любой точкой шнура, мы увидим, что каждая точка совершает колебания с тем же периодом Т. Хотя все точки шнура колеблются с одинаковой частотой, эти колебания «смещены» относительно друг друга во времени. Именно вследствие этого смещения во времени и возникает волна. Например, колебания точки 2 отстают от колебаний точки 1 на четверть периода . А колебания точки 3 отстают от колебаний точки 2 на один целый период Т. Отсюда следует важный вывод: точки 2 и 3 движутся одинаково.

Расстояние между ближайшими точками волны, которые движутся одинаково, называется длиной волны и обозначается λ .

Итак, механические волны – это механические колебания, распространяющиеся в пространстве с течением времени.

Скорость волны

За время, равное одному периоду Т, каждая точка среды совершила одно колебание и, значит, вернулась в то же самое положение. Следовательно, волна сместилась в пространстве как раз на одну длину волны. Таким образом, если обозначить скорость распространения волны υ , получим, что скорость волны

λ = υ Т

Так как Т = 1/ν , тогда получим, что скорость волны, длина волны и частота волны связаны соотношением

υ = λ ν


Что переносят волны?

В приведённые примерах видно, что вещество не перемещается вдоль направления распространения волны, т.е. волны не переносят вещество .
Однако волны переносят энергию : ведь волна – это колебание, распространяющиеся в пространстве, а любые колебания обладают энергией.

Колебания – это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени. Если колебательный процесс распространяется в пространстве с течением времени, то говорят о распространении волн.

Колебательные движения часто встречаются в природе и технике: колеблются деревья в лесу, струны музыкальных инструментов, поршни двигателя, голосовые связки, сердце и т.д. Колебательные движения происходят в жизни – землетрясения, приливы и отливы, сжимание и расширение нашей Вселенной.

Колебания возникают в системах всегда, если эти системы обладают устойчивыми положениями равновесия. При отклонении от положения равновесия возникает «возвращающая» сила, которая пытается вернуть систему в положение равновесия. Так как телам присуща инертность, то они «проскакивают» положение равновесия и тогда отклонение происходит в противоположном направлении. И тогда процесс начинает периодически повторяться.

В зависимости от физической природы различают механические и электромагнитные колебания . Однако колебания и волны независимо от их природы описываются количественно одними и теми же уравнениями.

Механические колебания – это такие движения тел, при которых через равные интервалы времени координаты движущегося тела, его скорость и ускорение принимают исходные значения.

Основные виды колебаний

1. Свободные
2. Вынужденные
3. Автоколебания

Свободные колебания

Свободные колебания – это колебания, возникающие в системе под действием внутренних сил после того, как систему вывели из положения равновесия. То есть такие колебания происходят только за счёт запаса энергии, сообщённого системе.

Условия возникновения свободных колебаний:
1. Система находится вблизи положения устойчивого равновесия (для возникновения «возвращающей» силы);
2. Трение в системе должно быть достаточно мало (иначе колебания быстро затухнут или вообще не возникнут).

Вынужденные колебания

Вынужденные колебания – это колебания, возникающие под действием внешних периодически изменяющихся сил.

Отличие от свободных колебаний:
1. Частота вынужденных колебаний всегда равна частоте периодической вынуждающей силы.
2. Амплитуда вынужденных колебаний не уменьшается со временем, даже если в системе присутствует трение. Поскольку потери механической энергии восполняются за счёт работы внешних сил.

Автоколебания

Автоколебания – это незатухающие колебания, которые могут существовать в системе без воздействия на неё внешних периодических сил. Такие колебания существуют за счёт поступления энергии от постоянного источника (которым обладает система) и регулируется самой системой.

К автоколебательным системам относятся: часы с маятником, электрический звонок с прерывателем, наше сердце и лёгкие и т.д.

Особенности автоколебаний:
1. Частота автоколебаний равна частоте свободных колебаний колебательной системы и не зависит от источника энергии (отличие от вынужденных колебаний) .
2. Амплитуда автоколебаний не зависит от энергии, сообщённой системе, а устанавливается самой системой (отличие от свободных колебаний) .

Гармонические колебания

Колебания, при которых смещение зависит от времени по закону косинуса или синуса, называют гармоническими.

Уравнение гармонического колебания

х = X max cosωt

Величины характеризующие колебательные движения

Амплитуда

Амплитуда колебаний – максимальное значение величины, которая испытывает колебания по гармоническому закону.

Физический смысл X max – максимальное значение смещения тела от положения равновесия при гармонических колебаниях.

Период и частота

Период гармонического колебания Т – это время одного полного колебания, то есть промежуток времени, через который движение полностью повторяется.

Единица измерения периода [Т ] = 1с

Частота колебаний ν – это число полных колебаний N, совершаемых телом за единицу времени t.

Единица измерения частоты [ν ] = 1 Гц = 1/с

Циклическая частота колебаний

Циклическая частота колебаний ω – это число полных колебаний, совершаемых за 2π секунд.

Единица измерения циклической частоты [ω ] = 1 рад/с

График гармонического колебания

Пример

КОЛЕБАНИЯ И ВОЛНЫ. Колебаниями называются процессы, при которых движения или состояния системы регулярно повторяются во времени. Наиболее наглядно демонстрирует колебательный процесс качающийся маятник, но колебания свойственны практически всем явлениям природы. Колебательные процессы характеризуются следующими физическими величинами.

Период колебаний Т – промежуток времени, через который состояние системы принимают одинаковые значения: u (t + T ) = u (t ).

Частота колебаний n или f – число колебаний в 1 секунду, величина, обратная периоду: n = 1/Т . Измеряется в герцах (Гц), имеет размерность с –1 . Маятник, совершающий одно качание в секунду, колеблется с частотой 1 Гц. В расчетах нередко используют круговую, или цикличную частоту w = 2pn .

Фаза колебанийj – величина, показывающая, какая часть колебания прошла с начала процесса. Измеряется в угловых величинах – градусах или радианах.

Амплитуда колебанийА – максимальное значение, которое принимает колебательная система, «размах» колебания.

Периодические колебания могут иметь самую разную форму, но наибольший интерес представляют так называемые гармонические, или синусоидальные колебания. Математически они записываются в виде

u (t ) = A sin j = A sin(w t + j 0),

где A – амплитуда, j – фаза, j 0 – ее начальное значение, w – круговая частота, t – аргумент функции, текущее время. В случае строго гармонического, незатухающего колебания, величины А , w и j 0 не зависят от t .

Любое периодическое колебание самой сложной формы может быть представлено в виде суммы конечного числа гармонических колебаний, а непериодическое (например, импульс) – бесконечным их количеством (теорема Фурье).

Система, выведенная из равновесия и предоставленная сама себе, совершает свободные, или собственные колебания, частота которых определяется физическими параметрами системы. Собственные колебания также могут быть представлены в виде суммы гармонических, так называемых нормальных колебаний, или мод.

Возбуждение колебаний может происходить тремя путями. Если на систему действует периодическая сила, меняющаяся с частотой f (маятник раскачивают периодическими толчками), система будет колебаться с этой – вынужденной – частотой. Когда частота вынуждающей силы f равна или кратна частоте собственных колебаний системы n , возникает резонанс– резкое возрастание амплитуды колебаний.

Если параметры системы (например, длину подвеса маятника) периодически изменяют, происходит параметрическое возбуждение колебаний. Оно наиболее эффективно, когда частота изменения параметра системы равна ее удвоенной собственной частоте: f пар = 2n соб.

Если колебательные движения возникают самопроизвольно (система «самовозбуждается»), говорят о возникновении автоколебаний, имеющих сложный характер.

Во время колебательных процессов происходит периодическое превращение потенциальной энергии системы в кинетическую. Например, отклонив маятник в сторону и, следовательно, подняв его на высоту h , ему сообщают потенциальную энергию mgh . Она полностью переходит в кинетическую энергию движения mv 2 /2, когда груз проходит положение равновесия и скорость его максимальна. Если при этом происходит потеря энергии, колебания становятся затухающими.

В физике отдельно рассматриваются колебания механические и электромагнитные – связанные колебания электрического и магнитного поля (свет, рентгеновское излучение, радио). В пространстве они распространяются в форме волн.

Волнойназывается возмущение (изменение состояния среды), которое распространяется в пространстве и несет энергию, не перенося вещества. Наиболее часто встречаются упругие волны, волны на поверхности жидкости и электромагнитные волны. Упругие волны могут возбуждаться только в среде (газе, жидкости, твердом теле), а электромагнитные волны распространяются и в вакууме.

Если возмущение волны направлено перпендикулярно направлению ее распространения, волна называется поперечной, если параллельно – продольной. К поперечным относятся волны, бегущие по поверхности воды и вдоль струны, а также электромагнитные волны – векторы напряженности электрического и магнитного полей перпендикулярны вектору скорости волны. Типичный пример продольной волны – звук.

Уравнение, описывающее волну, можно вывести из выражения для гармонических колебаний. Пусть в какой-то точке среды происходит периодическое движение по закону А = A 0 sin w t . Это движение будет передаваться от слоя к слою – по среде побежит упругая волна. Точка, находящаяся на расстоянии x от точки возбуждения, станет совершать колебательные движения, отставая на время t , необходимое для прохождения волной расстояния х : t = x /c , где c – скорость волны. Поэтому законом ее движения будет

A x = A 0 sin w (t x /c ),

или, так как w = 2p /T , где T - период колебаний,

A x = A 0 sin 2p (t /T x /cT ).

Это – уравнение синусоидальной, или монохроматической волны, распространяющейся со скоростью с в направлении х . Все точки волны в момент времени t имеют разные смещения. Но ряд точек, отстоящих на расстояние cT одна от другой, в любой момент времени смещены одинаково (т.к. аргументы синусов в уравнении отличаются на 2p и, следовательно, их значения равны). Это расстояние и есть длина волны l = сТ . Она равна пути, который проходит волна за один период колебания.

Фазы колебаний двух точек волны, находящихся на расстоянии D х одна от другой, отличаются на Dj = 2p D х /l , и, следовательно, на 2p при расстоянии, кратном длине волны. Поверхность, во всех точках которой волна имеет одинаковые фазы, называется волновым фронтом. Распространение волны происходит перпендикулярно ему, поэтому оно может рассматриваться как движение волнового фронта в среде. Точки волнового фронта формально считают фиктивными источниками вторичных сферических волн, при сложении дающих волну исходной формы (принцип Гюйгенса-Френеля).

Скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на p /2: скорость достигает максимума, когда смещение падает до нуля. То есть волна скоростей сдвинута относительно волны смещений (деформаций среды) по времени на Т /4, а в пространстве на l /4. Волна скоростей несет кинетическую энергию, а волна деформаций – потенциальную. Энергия все время переносится в направлении распространения волны +х со скоростью с .

Введенная выше скорость с отвечает распространению только бесконечной синусоидальной (монохроматической) волны. Она определяет скорость перемещения ее фазы j и называется фазовой скоростью с ф. Но на практике гораздо чаще встречаются как волны более сложной формы, так и волны, ограниченные во времени (цуги), а также совместное распространение большого набора волн разной частоты (например, белый свет). Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью. Если же фазовая скорость волны зависит от ее частоты w , наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счет дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w 0 ± Dw , из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью v гр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: с ф > v гр. При этом в хвостовой части пакета за счет сложения волн возникают все новые максимумы, которые передвигаются вперед и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стекла и жидкости.

В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: v гр > с ф, причем возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте. Аномальная дисперсия наблюдается, например, при движении очень мелких (так называемых капиллярных) волн на воде (v гр = 2с ф).

Все методы измерения времени и скорости распространения волн, базирующиеся на запаздывании сигналов, дают групповую скорость. Именно ее учитывают при лазерной, гидро- и радиолокации, зондировании атмосферы, в системах радиоуправления и т.п.

При распространении волн в среде происходит их поглощение – необратимый переход энергии волны в другие ее виды (в частности – в теплоту). Механизм поглощения волн разной природы различен, но поглощение в любом случае приводит к ослаблению амплитуды волны по экспоненциальному закону: А 1 /А 0 = е a , где a – так называемый логарифмический декремент затухания. Для звуковых волн, как правило, a ~ w 2: высокие звуки поглощаются значительно сильнее низких. Поглощение света – падение его интенсивности I – происходит по закону Бугера I = I 0 exp(–k l l ), где exp(x ) = e x , k l – показатель поглощения колебания с длиной волны l , l – путь, пройденный волной в среде.

Рассеяние звука на препятствиях и неоднородностях среды приводит к расплыванию звукового пучка и, как следствие, – к затуханию звука по мере его распространения. При размере неоднородности L < l /2 рассеяние волны отсутствует. Рассеяние света происходит по сложным законам и зависит не только от размера препятствий, но и от их физических характеристик. В природных условиях наиболее сильно проявляется рассеяние на атомах и молекулах, происходящее пропорционально w 4 или, что то же самое, l -4 (закон Рэлея). Именно рэлеевским рассеянием обусловлен голубой цвет неба и красный – Солнца на закате. Когда размер частиц становится сравним с длиной волны света (r ~ l ), рассеяние перестает зависеть от длины волны, свет рассеивается больше вперед, нежели назад. Рассеяние на крупных частицах (r >> l ) происходит с учетом законов оптики – отражения и преломления света.

При сложении волн, разность фаз которых постоянна (см . КОГЕРЕНТНОСТЬ) возникает устойчивая картина интенсивности суммарных колебаний – интерференция. Отражение волны от стенки равносильно сложению двух волн, идущих навстречу одна другой с разностью фаз p . Их суперпозиция создает стоячую волну, в которой через каждую половину периода Т /2 лежат неподвижные точки (узлы), а между ними – точки, колеблющиеся с максимальной амплитудой А (пучности).

Волна, падающая на препятствие или проходящая сквозь отверстие, огибает их края и заходит в область тени, давая картину в виде системы полос. Это явление называется дифракцией; оно становится заметным, когда размер препятствия (диаметр отверстия) D сравним с длиной волны: D ~ l .

В поперечной волне может наблюдаться явление поляризации, при котором возмущение (смещение в упругой волне, векторы напряженности электрического и магнитного полей в электромагнитной) лежит в одной плоскости (линейная поляризация) или вращается (круговая поляризация), меняя при этом интенсивность (эллиптическая поляризация).

При движении источника волн навстречу наблюдателю (или, что то же самое – наблюдателя навстречу источнику) наблюдается повышение частоты f , при удалении – понижение (эффект Доплера). Это явление можно наблюдать возле железнодорожного пути, когда мимо проносится локомотив с сиреной. В тот момент, когда он оказывается рядом с наблюдателем, происходит заметное понижение тона гудка. Математически эффект записывается как f = f 0 /(1 ± v /c ), где f – наблюдаемая частота, f 0 – частота излучаемой волны, v – относительная скорость источника, c – скорость волны. Знак «+» соответствует приближению источника, знак «–» – его удалению.

Несмотря на принципиально разную природу волн, законы, определяющие их распространение, имеют много общего. Так, упругие волны в жидкостях или газах и электромагнитные волны в однородном пространстве, излученные малым источником, описываются одним и тем же уравнением, а волны на воде, подобно свету и радиоволнам, испытывают интерференцию и дифракцию.

Сергей Транковсий

Школа №283 г. Москва

РЕФЕРАТ:

ПО ФИЗИКЕ

«Колебания и волны»

Выполнил:

Ученик 9 «б» школы №283

Грач Евгений.

Учитель физики:

Шарышева

Светлана

Владимировна

Введение. 3

1. Колебания. 4

· Периодическое движение 4

· Свободные колебания 4

· Маятник. Кинематика его колебаний 4

· Гармоническое колебание. Частота 5

· Динамика гармонических колебаний 6

· Превращение энергии при свободных колебаниях 6

· Период 7

· Сдвиг фаз 8

· Вынужденные колебания 8

· Резонанс 8

2. Волны. 9

· Поперечные волны в шнуре 9

· Продольные волны в столбе воздуха 10

· Звуковые колебания 11

· Музыкальный тон. Громкость и высота тона 11

· Акустический резонанс 12

· Волны на поверхности жидкости 13

· Скорость распространения волн 14

· Отражение волн 15

· Перенос энергии волнами 16

3. Применение 17

· Акустический динамик и микрофон 17

· Эхолот 17

· Ультразвуковая диагностика 18

4. Примеры задач по физике 18

5. Заключение 21

6. Список используемой литературы 22

Введение

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Таким свойством повторяемости обладают, например, качания маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника и т. п.

В зависимости от физической природы повторяющегося процесса, различают колебания: механические, электромагнитные, электромеханические и т. д. В данном реферате рассматриваются механические колебания.

Этот раздел физики является ключевым в вопросе «Почему рушатся мосты?» (см. стр. 8)

Вместе с тем колебательные процессы лежат в самой основе различных отраслей техники.

Так, например, на колебательных процессах основана вся радиотехника, и в частности акустический динамик (см. стр. 17)

О реферате

В первой части реферата («Колебания» стр.4-9) подробно описано, о том, что такое механические колебания, какие бывают виды механических колебаний, величины, характеризующие колебания, а так же, что такое резонанс.

Во второй части реферата («Волны» стр. 9-16) рассказывается о том, что такое волны, как они возникают, какие бывают волны, что такое звук, его характеристики, с какой скоростью распространяются волны, как отражаются и как волнами переносится энергия.

В третьей части реферата («Применение» стр. 17-18) рассказано о том, для чего нам все это нужно знать, и о том, где в технике и в повседневной жизни применяются механические колебания и волны.

В четвертой части реферата (стр. 18-20) приводится несколько примеров задач по физике на данную тему.

Заканчивается реферат катким обобщением всего сказанного («Заключение» стр. 21) и списком использованной литературы (стр. 22)

Колебания.

Периодическое движение.

Среди всевозможных совершающихся вокруг нас механических движений часто встречаются повторяющиеся движения. Любое равномерное вращение является повторяющимся движением: при каждом обороте всякая точка равномерно вращающегося тела проходит те же положения, что и при предыдущем обороте, причем в такой же последовательности и с такой же скоростью.

В действительности не всегда и не при всяких условиях повторение совершенно одинаково. В одних случаях каждый новый цикл очень точно повторяет предыдущий, в других случаях различие между следующими друг за другом циклами может быть заметным. Отклонения от совершенно точного повторения очень часто настолько малы, что ими можно пренебречь и считать движение повторяющимся вполне точно, т.е. считать его периодическим.

Периодическим называется повторяющееся движение, у которого каждый цикл в точности воспроизводит любой другой цикл.

Продолжительность одного цикла называется периодом. Очевидно, период равномерного вращения равен продолжительности одного оборота.

Свободные колебания.

В природе, и особенно в технике, чрезвычайно большую роль играют колебательные системы, т.е. те тела и устройства, которые сами по себе способны совершать периодические движения. «Сами по себе» - это значит не будучи принуждаемы к этому действием периодических внешних сил. Такие колебания называются поэтому свободными колебаниями в отличие от вынужденных, протекающих под действием периодически меняющихся внешних сил.

Всем колебательным системам присущ ряд общих свойств:

1. У каждой колебательной системы есть состояние устойчивого равновесия.

2. Если колебательную систему вывести из состояния устойчивого равновесия, то появляется сила, возвращающая систему в устойчивое положение.

3. Возвратившись в устойчивое состояние, колеблющееся тело не может сразу остановиться.

Маятник; кинематика его колебаний.

Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Молоток, висящий на гвозде, весы, груз на веревке – все это колебательные системы, подобные маятнику стенных часов.

У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника это положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну сторону, то в другую сторону от положения равновесия. Наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство – зависимость амплитуды от условий в начале движения – характерно не только для свободных колебаний маятника, но и вообще для свободных колебаний очень многих колебательных систем.

Прикрепим к маятнику волосок и будем двигать под этим волоском закопченную стеклянную пластинку. Если двигать пластинку с постоянной скоростью в направлении, перпендикулярном к плоскости колебаний, то волосок прочертит на пластинки волнистую линию. Мы имеем в этом опыте простейший осциллограф – так называются приборы для записи колебаний. Таким образом волнистая линия представляет собой осциллограмму колебаний маятника.




Амплитуда колебаний изображается на этой осциллограмме отрезком AB, период изображается отрезком CD, равным расстоянию, на которое передвигается пластинка за период маятника.

Так как мы двигаем закопченную пластинку равномерно, то всякое ее перемещение пропорционально времени, в течении которого оно совершалось. Мы можем сказать поэтому, что вдоль оси x в определенном масштабе отложено время. С другой стороны, в направлении, перпендикулярном к x волосок отмечает на пластинке расстояние конца маятника от его положения равновесия, т.е. путь пройденный концом маятника от этого положения.

Как мы знаем, наклон линии на таком графике изображает скорость движения. Через положение равновесия маятник проходит с наибольшей скоростью. Соответственно этому и наклон волнистой линии наибольший в тех точках, где она пересекает ось x. Наоборот, в моменты наибольших отклонений скорость маятника равна нулю. Соответственно этому и волнистая линия в тех точках, где она наиболее удалена от оси x, имеет касательную параллельную x , т.е. наклон равен нулю

Гармоническое колебание. Частота.

Колебание, какое совершает при равномерном движении точки по окружности проекция этой точки на какую-либо прямую, называется гармоническим (или простым) колебанием.

Гармоническое колебание является специальным, частным видом периодического колебания. Этот специальный вид колебания очень важен, так как он чрезвычайно часто встречается в самых различных колебательных системах. Колебание груза на пружине, камертона, маятника, зажатой металлической пластинки как раз и является по своей форме гармоническим. Следует заметить, что при больших амплитудах колебания указанных систем имеет несколько более сложную форму, но они тем ближе к гармоническому, чем меньше амплитуда колебаний.

Колебания – изменения какой-либо физической величины, при которых эта величина принимает одни и те же значения. Параметры колебаний:

  • 1) Амплитуда – величина наибольшего отклонения от состояния равновесия;
  • 2) Период – время одного полного колебания, обратная величина – частота;
  • 3) Закон изменения колеблющейся величины со временем;
  • 4) Фаза – характеризует состояние колебаний в момент времени t.

F x = -r k – восстанавливающая сила

Гармонические колебания - колебания, при которых величина, вызывающая отклонение системы от устойчивого состояния, изменяется по закону синуса или косинуса. Гармонические колебания являются частным случаем периодических колебаний. Колебания можно представлять графическим, аналитическим (например, x(t) = Asin (?t + ?), где? - начальная фаза колебания) и векторным способом (длина вектора пропорциональна амплитуде, вектор вращается в плоскости чертежа с угловой скоростью? вокруг оси, перпендикулярной плоскости чертежа, проходящей через начало вектора, угол отклонения вектора от оси X есть начальная фаза?). Уравнение гармонических колебаний:

Сложение гармонических колебаний , происходящих вдоль одной прямой с одинаковыми или близкими частотами. Рассмотрим два гармонических колебания, происходящих с одной частотой: x1(t) = A1sin(?t + ?1); x2(t) = A2sin(?t + ?2).

Вектор, представляющий собой сумму этих колебаний, вращается с угловой скоростью?. Амплитуда суммарного колебаний – векторная сумма двух амплитуд. Ее квадрат равен A?2 = A12 + A22 + 2A1A2cos(?2 - ?1).

Начальная фаза определяется следующим образом:

Т.е. тангенс? равен отношению проекций амплитуды суммарного колебания на координатные оси.

В случае если частоты колебаний отличаются на величину 2?: ?1 = ?0 + ?; ?2 = ?0 - ?, где? << ?. Положим также?1 = ?2 = 0 и А1 = А2:

X 1 (t)+X 2 (t) = A(Sin(W o +?)t+Sin((W o +?)t) X 1 (t)+X 2 (t) =2ACos?tSinW?.

Величина 2Аcos?t есть амплитуда полученного колебания. Она медленно меняется во времени.

Биения . Результат суммы таких колебаний называется биением. В случае, если А1 ? А2, то амплитуда биения меняется в пределах от А1 + А2 до А1 – А2.

В обоих случаях (при равных и при различных амплитудах) суммарное колебание не является гармоническим, т.к. его амплитуда не постоянна, а медленно меняется во времени.

Сложение перпендикулярных колебаний. Рассмотрим два колебания, направления которых перпендикулярны друг другу (частоты колебаний равны, начальная фаза первого колебания равна нулю):

y= bsin(?t + ?).

Из уравнения первого колебания имеем: . Второе уравнение можно преобразовать следующим образом

sin?t?cos? + cos?t?sin? = y/b

Возведем обе части уравнения в квадрат и воспользуемся основным тригонометрическим тождеством. Получим(см ниже): . Полученное уравнение есть уравнение эллипса, оси которого несколько повернуты относительно осей координат. При? = 0 или? = ? эллипс принимает вид прямой y = ?bx/a; при? = ?/2 оси эллипса совпадают с осями координат.

Фигуры Лиссажу . В случае если?1 ? ?2, форма кривой, которую описывает радиус вектор суммарного колебаний гораздо более сложная, она зависит от отношения?1/?2. Если это отношение равно целому числу (?2 кратна?1), при сложении колебаний получаются фигуры, называемые фигурами Лиссажу.

Гармонический осцилятор – колеблющаяся система, потенциальная энергия которой пропорциональна квадрату отклонения от положения равновесия.

Маятник , твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или оси. В физике под М. обычно понимают М., совершающий колебания под действием силы тяжести; при этом его ось не должна проходить через центр тяжести тела. Простейший М. состоит из небольшого массивного груза C, подвешенного на нити (или лёгком стержне) длиной l. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то груз на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса O (рис. 1, а). Такой М. называется математическим . Если же, как это обычно имеет место, колеблющееся тело нельзя рассматривать как материальную точку, то М. называется физическим .

Математический маятник . Если М., отклоненный от равновесного положения C0, отпустить без начальной скорости или сообщить точке C скорость, направленную перпендикулярно OC и лежащую в плоскости начального отклонения, то М. будет совершать колебания в одной вертикальной плоскости по дуге окружности (плоский, или круговой математический М.). В этом случае положение М. определяется одной координатой, например углом j, на который М. отклонен от положения равновесия. В общем случае колебания М. не являются гармоническими; их период T зависит от амплитуды. Если же отклонения М. малы, он совершает колебания, близкие к гармоническим, с периодом:

где g - ускорение свободного падения; в этом случае период T не зависит от амплитуды, то есть колебания изохронны.

Если отклонённому М. сообщить начальную скорость, не лежащую в плоскости начального отклонения, то точка C будет описывать на сфере радиуса l кривые, заключённые между 2 параллелями z = z1 и z = z2, а), где значения z1 и z2 зависят от начальных условий (сферический маятник). В частном случае, при z1 = z2, б) точка C будет описывать окружность в горизонтальной плоскости (конический маятник). Из некруговых М. особый интерес представляет циклоидальный маятник, колебания которого изохронны при любой величине амплитуды.

Физический маятник . Физическим М. обычно называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса (рис. 1, б). Движение такого М. вполне аналогично движению кругового математического М. При малых углах отклонения j М. также совершает колебания, близкие к гармоническим, с периодом: ,

где I - момент инерцииМ. относительно оси подвеса, l - расстояние от оси подвеса O до центра тяжести C, M - масса М. Следовательно, период колебаний физического М. совпадает с периодом колебаний такого математического М., который имеет длину l0 = I/Ml. Эта длина называется приведённой длиной данного физического М.

Пружинный маятник - это груз массой m, закрепленный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы Fупр= - k x, где k - коэффициент упругости, в случае пружины наз. жесткостью. Ур движения маятника:, или.

Из приведенных выражений следует, что пружинный маятник совершает гармо­нические колебания по закону х = A cos (w0 t +?j), с циклической частотой

и периодом

Формула справедлива для упругих колебаний в пределах, в которых выпол­няется закон Гука (Fупр= - k x), т. е. когда масса пружины мала по сравнению с мас­сой тела.

Потенциальная энергия пружинного маятника равна

U = k x2/2 = m w02 x2/2 .

Вынужденные колебания. Резонанс . Вынужденные колебания происходят под действием внешней периодической силы. Частота вынужденных колебаний задается внешним источником и не зависит от параметров самой системы. Уравнение движения груза на пружине может быть получено формальным введением в уравнение некой внешней силы F(t) = F0sin?t: . После преобразований, аналогичных выводу уравнения затухающих колебаний, получаем:

Где f0 = F0/m. Решением этого дифференциального уравнения является функция x(t) = Asin(?t + ?).

Слагаемое? появляется из-за инерционности системы. Запишем f0sin (?t - ?) = f(t) = f0 sin (?t + ?), т.е. сила действует с некоторым опережением. Тогда можно записать:

x(t) = A sin ?t.

Найдем А. Для этого подсчитаем первую и вторую производные последнего уравнения и подставим их в дифференциальное уравнение вынужденных колебаний. Послед приведения подобных получим:

Теперь освежим в своей памяти представления о векторной записи колебаний. Что же мы видим? Вектор f0 представляет собой сумму векторов 2??A и A(?02 - ?2), причем эти вектора (почему-то) перпендикулярны. Запишем теорему Пифагора:

4?2?2A2 + A2(?02 - ?2)2 = f02:

Отсюда выражаем А:

Таким образом амплитуда А является функцией от частоты внешнего воздействия. Однако если колеблющаяся система обладает слабым затуханием? << ?, то при близких значениях? и?0 происходит резкое возрастание амплитуды колебаний. Это явление получило название резонанса.

Период.

Периодом T называется промежуток времени, в течение которого система совершает одно полное колебание:

N - число полных колебаний за время t .

Частота.

Частота ν - число колебаний в единицу времени:

Единица частоты - 1 герц (Гц) = 1 с -1

Циклическая частота:

Уравнение гармонического колебания:

x - смещение тела от положения. X m - амплитуда, то есть максимальное смещение, (ωt + φ 0) - фаза колебаний, Ψ 0 - его начальная фаза.

Скорость.

При φ 0 = 0:

Ускорение.

При φ 0 = 0:

Свободные колебания.

Свободными называются колебания, возникающие в механической системе (осцилляторе) при единичном отклонении её от положения равновесия, имеющие собственную частоту ω 0 , задаваемую только параметрами системы, и затухающие со временем из-за наличия трения.

Математический маятник.

Частота:

l - длина маятника, g - ускорение свободного падения.

Максимальную кинетическую энергию маятник имеет в момент прохождения положения равновесия:

Пружинный маятник.

Частота:

k - жёсткость пружины, m - масса груза.

Максимальную потенциальную энергию маятник имеет при максимальном смещении:

Вынужденные колебания.

Вынужденными называют колебания, возникающие в колебательной системе (осцилляторе) под действием периодически меняющейся внешней силы.

Резонанс.

Резонанс - резкое увеличение амплитуды X m вынужденных колебаний при совпадении частоты ω вынуждающей силы с частотой ω 0 собственных колебаний системы.

Волны.

Волны - это колебания вещества (механические) или поля (электромагнитные), распространяющиеся в пространстве с течением времени.

Скорость волны.

Скорость распространения волны υ - скорость передачи энергии колебания. При этом частицы среды колеблются около положения равновесия, а не движутся с волной.

Длина волны.

Длина волны λ - расстояние, на которое распространяется колебание за один период:

Единица длины волны - 1 метр (м).

Частота волны:

Единица частоты волны - 1 герц(Гц).



Рекомендуем почитать

Наверх