Сенсорные центры коры. Сенсорные зоны(области) коры больших полушарий

Дизайн и интерьер 28.10.2023
Дизайн и интерьер

Функциональные зоны коры.

Особенностью функциональной организации коры является то, что сигналы от рецепторов проецируются не на один нейрон коры, а на группу связанных между собой нейронов. В результате сигнал фокусируется не только в одной точке (в одном поле), а распространяется на некоторое расстояние и захватывает совокупность нейронов. Это обеспечивает анализ сигнала и возможность его передачи в другие структуры мозга. Из первичных сенсорных зон импульсы распространяются к ассоциативным и моторным областям.

Сенсорные зоны коры.

В коре выделяют зоны, получающие специфическую сенсорную информацию: зрительную (затылочная), слуховую (височная), соматосенсорную и вкусовую (теменная).

Соматосенсорная зона коры - область мышечной и кожной чувствительности - располагается в заднецентральной извилине, позади центральной борозды (рис. 4.49). При ее раздражении возникает ощущение прикосновения, покалывания, онемения. Иногда появляется ощущение холода или жара, очень редко - слабой боли. К этой зоне приходят сигналы от скелетных мышц, сухожилий и суставов, а также сигналы от тактильных, температурных и других рецепторов кожи. Вследствие перекреста проводящих путей в правое полушарие поступают импульсы от левой половины тела, а в левое полушарие - от правой.

Самую большую площадь занимает сенсорная область кисти руки, а затем голосового аппарата и лица, наименьшие размеры имеют сенсорные области туловища, бедра, голени, т.е. области с более низкой чувствительностью.

Сенсорная зрительная зона располагается в затылочной области коры на стенках и на дне шпорной борозды правого и левого полушарий. В эту зону приходят импульсы от рецепторов сетчатки. При раздражении ее отдельных участков возникают простейшие зрительные ощущения: вспышки света, темноты, различные цветовые ощущения, и никогда не появляются сложные зрительные образы.

Сенсорная слуховая зона располагается в височной области. Сюда приходят афферентные импульсы от рецепторов улитки. Раздражение этой области вызывает ощущение низких и высоких, громких или тихих звуков, при этом никогда не слышатся речевые звуки.

Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. К ней приходят импульсы от вкусовых рецепторов полости рта и языка. При ее раздражении возникают различные вкусовые ощущения.

Зона обонятельной чувствительности располагается в старой коре - гиппокамповой извилине и амоновом роге. Она получает импульсы от обонятельных рецепторов слизистой оболочки носа, приходящие по обонятельному тракту. При ее раздражении возникают простые обонятельные ощущения.

Моторные (двигательные, афферентные) зоны коры расположены в переднецентральной извилине лобной доли

Рис. 4.49.

и связаны с ядрами ствола мозга и мотонейронами спинного мозга (см. рис. 4.48).

Ассоциативные зоны получают импульсы от всех зон коры. Здесь происходит интеграция информации, полученной от нескольких сенсорных систем. К ассоциативной относится лимбическая кора, включающая находящиеся на внутренней и нижней поверхности полушария в области краевой доли поясную и парагиппокамповую извилины. Сюда подходят пути от подкорковых и гипоталамических структур. Лимбическая система мозга интегрирует три вида информации: 1) о работе внутренних органов, 2) от чувствительных, двигательных и ассоциативных зон коры, 3) от обонятельных рецепторов. От обонятельных луковиц, лежащих на нижней поверхности больших полушарий, начинается обонятельный тракт, который идет в лимбическую область коры.

Таким образом, на основе вышесказанного функции коры можно обобщить следующим образом:

  • сенсорная функция - в коре находятся высшие отделы всех сенсорных систем (зрительной, слуховой, тактильной и др.);
  • ассоциативная функция связана с лобными долями, большей частью теменной и височной, благодаря им образ или явление воспринимаются во всем многообразии;
  • двигательная функция - двигательная область коры контролирует активность мотонейропов и, следовательно, произвольные движения.

Для больших полушарий головного мозга характерна межполушарная асимметрия , или доминирование полушарий по функциональной значимости (рис. 4.50). С левым полушарием связаны речь (устная и письменная), сложные произвольные движения, чтение, письмо, счет. С правым - распознавание сложных зрительных и слуховых стимулов, восприятие пространства, формы, направления, интуиция.

Важное свойство корковых нейронов - длительное сохранение возбуждения. Это делает возможным организацию сложных двигательных актов, эмоциональных состояний и других поведенческих реакций.

Локализация функций в коре головного мозга.

Существует две точки зрения: 1) кора выполняет общие функции; 2) имеются зоны, в которых локализуются определенные функции.

Кора делится на поля, которые объединяются в зоны. Зоны отвечают за определенные функции, поля в этих зонах - за какую-то часть этой функции.

В соответствии с классификацией Бродмана, кора разделена 11 областей и на 52 поля: 1) постцентральная область (1,2,3,43); 2) прецентральная область (4,6); 3) лобная область (8,9,10,11,12,44,45,46,47); 4) островковая область – 13,14,15,16; 5) теменная область – 5,7,40,39; 6) височная область – 20,21,22,36,37,38,41,42,52; 7) затылочная область – 17,18,19; 8) поясная область – 23,31,24,32,33,25; 9) ретросплениальная область – 26,29,30; 10) гиппокампова область – 27,28,34,35,48; 11) обонятельная область – 51, обонятельный бугорок.


Рис. 6 Цитоархитектонические поля по Бродману

А – верхнелатеральная поверхность; Б – медиальная поверхность;

Корковые поля различаются по форме, величине и количеству расположенных в них клеток, общее количество нейронов в коре около 14 млрд.

Экспериментальными исследованиями установлено наличие в коре мозга трех зон, связанных со специфическими функциями и участками тела - двигательных, сенсорных и ассоциативных. Взаимосвязь между зонами позволяет координировать произвольные и непроизвольные формы деятельности, а также психические функции личности.

Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Корковый конец анализатора имеет не строго ограниченные границы, а состоит из ядерной и рассеянной частей. Ядро представляет собой точную проекцию в коре периферических рецепторов данной области и является необходимым для осуществления общего анализа и синтеза. Рассеянные элементы находятся по периферии ядра или могут быть разбросаны далеко от него. В них осуществляются более простые анализ и синтез.

Сенсорные зоны.

Сенсорные зоны занимают участки мозга, связанные с определенными видами чувствительности. В эти зоны поступает сенсорная информация.

Первичные сенсорные зоны - это области сенсорной коры, раздражение или разрушение которых вызывает четкие, постоянные изменения чувствительности организма (ядра анализаторов по Павлову).

Вокруг первичных зон находятся менее локализованные вторичные сенсорные зоны , нейроны которых отвечают на действие нескольких раздражителей.

Рассмотрим основные первичные зоны коры.

1) зона кожно-мышечной чувствительности (соматосенсорная зона )– теменная кора, пост(задне)-центральная извилина, поля 1,2,3,5,7 – к этой зоне приходят проприоцептивные импульсы от скелетных мышц, а также импулься от тактильных, температурных и других рецепторов кожи. Самую большую площадь зоны занимает область кисти, голосового аппарата, головы. Наименьшую площадь занимают представительства туловища, нижних конечностей. При повреждении зоны нарушается кожно-мышечная чувствительность



2) зрительная зона – ядро зрительного анализатора находится на медиальной поверхности затылочной доли полушарий, поля 17, 18, 19 - все зрительные ощущения. Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза. Ядро зрительного анализатора левого полушария связано с латеральной половиной сетчатки левого глаза и медиальной половиной сетчатки правого глаза.

3) Слуховая зона – ядро слухового анализатора лежит в средней части верхней височной извилины, обращенной к островку; к ним из полушарий подходят проводящие пути от рецепторов органа слуха как левой так и правой стороны. Височная доля, поля 20, 21 (нарушение равновесия), 22 (музыкальная глухость), 41 (информация от улитки - снижение слуха), 37.

4) Обонятельная зона – ядро обонятельного анализатора располагается в пределах основания обонятельного мозга, поле 11.

5) Вкусовая зона - древняя кора, ядро вкусового анализатора по одним данным находится в постцентральной извилине, близко к центрам языка, рта; по другим данным оно находится рядом с корковым концом обонятельного анализатора. Установлено, что расстройство вкуса наступает при поражении 43 поля.

Моторные зоны: двигательных зонах коры возникают импульсы, передающиеся по нисходящим путям к мышцам головы, туловища и конечностей. Ядро двигательного анализатора представлено полями 4 и 6, расположенными в предцентральной извилине и парацентральной извилине. Двигательные зоны каждого из полушарий связаны со скелетной мускулатурой противоположной стороны тела. Выделяют первичную и вторичную области.

1) Первичная область, моторная зона - переднецентральная извилина, 4 поле, работа сложной скелетной мускулатуры, большая часть регулирует работу мышц лица, кисти. При поражении этой зоны утрачивается способность к тонким, координированным движениям конечностей и особенно пальцами рук.

2) Вторичная двигательная зона, премоторная зона - поля 6,8,9,10,11 в лобной доле, сложные двигательные условные рефлексы, тонус скелетных мышц, регуляция работы внутренних органов, осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений.

Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляют первую сигнальную систему. Согласно Павлову, в отличие от первой вторая сигнальная система есть только у человека и связана с развитием речи.

Ассоциативные зоны:

Включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами. Располагаются между сенсорными зонами - в них возникает возбуждение независимо от вида раздражителя.

Они не выполняют непосредственно чувствительных или двигательных функций. Нейроны этих зон обладают большими способностями к обучению.

Нейроны ассоциативной зоны отвечают не на один, а на несколько раздражителей.

Выделяют две основные ассоциативные системы мозга : таламотеменную и таламолобную.

Таламотеменная система представлена ассоциативными зонами теменной коры. Ее основные функции: гнозис и праксис. Гнозис - функция различных видов узнавания – формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др.

Праксис – целенаправленное действие, центр праксиса отвечает за хранение и реализация программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры. Основная функция сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (Анохин).

Корковые концы анализаторов речи. Центры речи:

А) Двигательный центр - в нижней части передней центральной извилины, поле 44-45, 44 - центр Брока – обеспечивает речевой праксис, в этой части речедвигательного анализатора осуществляется анализ движений всех мышц губ, щек, языка, гортани, принимает участие в акте образования устной речи (произношение слов и предложений). Повреждение участка коры этой области (44 поле) приводит к двигательной афазии, т.е. утрате способности произносить слова. 45 – музыкальный моторный центр – обеспечивает тональность речи, способность петь, находится в центральных отделах лобной извилины; поражение 45 поля сопровождается аграмматизмом, т.е. утрате способности к составлению осмысленных предложений из отдельных слов. Центр письменной речи локализуется в заднем отделе средней лобной извилины, обеспечивает автоматизм письма.

Б) Слуховой центр осмысления устной речи - в задней части верхней височной извилины, поле 42, 22 (центр Вернике), 40, 37. При повреждении нарушается понимание смысла слов, но сохраняется говорливостью - амназия.

В) Зрительный центр – располагается в теменной доле, поля 39,40, обеспечивает восприятие письменной речи.

Сенсорные центры речи 2 и3 представлены только в левом полушарии.

· Представляют из себя центральные (корковые) отделы анализаторов, к ним подходят чувствительные (афферентные) импульсы от соответствующих рецепторов

· Занимают небольшую часть коры полушарий (до 20%)

v Размер зоны зависит от количества нейронов, воспринимающих раздражение от определённых рецепторов (чем больше клеток, том тоньше анализ раздражений, выше чувствительность участка тела)

v При разрушении сенсорных областей коры наступает нарушение чувствительности (слепота, глухота и др.) при сохранении целостности периферических отделов анализаторов (глаз, уха, кожи и т.д.)

1. Соматосенсорная зона – область кожной (осязание, температура, боль, вибрация, давление, влажность), висцеральной (чувствительность внутренних органов), проприорецептивной (мышечная, суставная, сухожильная чувствительность рецепторов, раздражающихся при движении) – располагается в заднецентральной извилинетеменной доли

v В правое полушария поступают импульсы от левой половины тела, а в левое – от правой

v Самый большой размер имеет сенсорная область кисти руки, затем голосового аппарата и лица. Наименьшее – сенсорные области туловища, бедра, голени, что соответствует их физиологической значимости

2. Сенсорная зрительная зона – локализуется в коре затылочной доли в правом и левом полушарии (в эту зону приходят рецепторы от сетчатки глаза; образует неполный перекрёст); двухстороннее поражение этой зоны ведёт к полной потере зрения

3. Сенсорная слуховая зона – располагается в коре височной доли левого и правого полушария

v К каждому полушарию подходят проводящие пути от рецепторов кортиевого органа улитки, как с левой, так и с правой стороны (возникновение и осознание звуковой информации). Обрабатывает чувствительную информацию с вестибулярного аппарата и создаёт ощущение положения тела в пространстве

v При двухстороннем поражении этой зоны наступает полная глухота; при поражении в левом полушарии – музыкальная глухота (узнавание мотивы) и словесная глухота (больной перестаёт распознавать значение слов); раздражение этой зоны или воспаление вызывает слуховые галлюцинации

4. Сенсорная вкусовая зона – локализуется в нижней части заднецентральной извилины теменной доли полушарий (к ней подходят импульсы от вкусовых рецепторов полости рта и языка (как с левой, так и с правой стороны); поражения этой зоны ведёт к потере или искажению вкусовых ощущений

5. Сенсорная обонятельная зона локализуется в гипокамповой извилине лимбической системы в глубине боковой борозды - островке (к ней подходят импульсы от обонятельных рецепторов слизистой оболочки носовой полости); двухстороннее поражение ведёт к полной потере обоняния (аносмии )

II. Моторные (двигательные) зоны коры больших полушарий (зоны, при раздражении которых возникает движение скелетной мускулатуры) – локализуются в переднецентральной извилине полушарий лобных долей

· Здесь формируются сигналы, регулирующие произвольные движения скелетных мышц (при раздражении различных участков этой области возникают сокращения отдельных мышц)

v При повреждении области передней центральной извилины наступает обездвиживание – паралич, несмотря на функциональную полноценность мышц

v Соединяются с сенсорными зонами, вследствие чего при раздражении сенсорной области наряду с ощущением возникает и движение, а вместе с движением возникает ощущение

v Представительство мышц различных частей тела соответствует представительству соматосенсорной зоны в заднецентральной извилине (величина корковой двигательной зоны пропорциональна не массе мышц, а точности движений; особенно велика зона, управляющая движениями кисти руки, языка, мимической мускулатурой лица)

v Двигательные пути от обоих полушарий образуют перекрёст, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела и наоборот

v Импульсы от моторных зон коры полушарий по нисходящим путям поступаю в двигательные нейроны передних рогов серого вещества спинного мозга и только потом в мышцы

· Моторная и сенсорная зоны, расположенные по обе стороны центральной борозды, представляют собой единое функциональное образование, и их часто объединяют под названием сенсомоторной зоны

Цитоархитектонические поля Бродмана. Окрашенные зоны :
а) Моторная (красная) :
4 - первичная моторная кора
6 - на медиальной поверхности, дополнительная моторная зона
6 - на латеральной поверхности, премоторная кора
б) Сенсорная (голубая) :
3/1/2 - первичная соматосенсорная кора
40 - вторичная соматосенсорная кора
17 - первичная зрительная кора 18,
19 - ассоциативная зрительная кора
41, 42 - первичная слуховая кора*
22 - ассоциативная слуховая кора
(*Первичную слуховую кору не всегда можно увидеть сбоку, так как она полностью расположена на верхней поверхности верхней височной извилины.)

а) Соматосенсорная кора :

1. Отделы . Соматосенсорная, или соматоэстетическая, кора занимает всю постцентральную извилину. Части тела противоположной стороны представлены инвертированными (за исключением лица), а кисти рук, губы и язык представлены непропорционально большими. Представленные на рисунке ниже уже известные Вам гомункулы лишь схематически изображают расположение различных частей тела без учета обширных участков, перекрывающих друг друга.

На вертикальном срезе соматосенсорная кора разделена на поля 3, 1 и 2. Таламо-корковые волокна (от вентральных задних медиального и латерального ядер) подходят преимущественно к полю 3 (разделенному на более мелкое поле За и более крупное поле 3б) и в меньшей степени - к полям 1 и 2. Происходит распределение информация от кожных рецепторов, и быстро проводящие волокна направляются преимущественно к полю 1; к более сложно организованному полю 2 приходят импульсы от кожных и других рецепторов. Размер и сложность организации рецепторного поля прогрессивно увеличиваются от 3б до 1. Поля 3 (За иногда включают в состав моторной коры), 1 и 2 рассматривают как первичную соматосенсорную кору (SI), однако поле 3б больше «заслуживает» определение первичный. Нейроны сенсорной коры обладают постоянно изменяющимися функциональными свойствами и не просто производят извлечение соответствующей сенсорной информации, а систематизируют ее в зависимости от контекста или ситуации. Подобная контекстуальная обработка обусловливает адаптирующееся целенаправленное поведение; многократная обработка - основа обучения.


(А) Рисунок (адаптирован из Penfield и Rasmussen), изображающий перевернутого «двигательного» гомункула в левой прецентральной извилине, за исключением лица. Зоны, перекрывающие друг друга, не показаны.
(Б) Рисунок (адаптирован из Penfield и Rasmussen), изображающий перевернутого «сенсорного» гомункула в левой постцентральной извилине, за исключением лица. Зоны, перекрывающие друг друга, не показаны.
(В) Первичная двигательная кора (красная) и первичная соматосенсорная кора (синяя), вид сверху. Относительно более крупные моторные и сенсорные области левого полушария характерны для правшей.

Сенсорная нейронная цепочка, позволяющая идентифицировать ключ только с помощью ощупывания.
(А) Закодированная сенсорная информация от правой кисти входит в спинной мозг и затем направляется по чувствительным нейронам второго порядка (противоположной стороны)
в медиальном отделе левого заднего канатика в составе медиального лемнискового пути в верхний отдел ствола .
(Б) Зона, отвечающая за кисть в вентральном заднем латеральном ядре таламуса (ВЗЛЯ), содержит тела третичных чувствительных нейронов.
(В) Нейроны третьего порядка посылают волокна к зонам 3, 1 (опосредованно) и 2 соматосенсорной коры.
(Г) Корковый отдел «одного» пальца (КООП).
(Д) Корковый отдел нескольких пальцев (КОНП).
(Е) Левая теменная доля (обведенная область обозначает зону кисти), вид снаружи.
К зоне 7 подходят короткие ассоциативные волокна от зон 1, 2 и 5; в ней происходит объединение информации от кожи, мышечных веретен и суставных капсул.
Взаимосвязи с хранилищем тактильной информации здесь и в зоне 5 позволяют создать образ ключа без помощи зрения.

2. Афферентные волокна . Помимо таламических афферентных волокон от вентрального заднего ядра, к соматосенсорной коре подходят также комиссуральные волокна от противоположной соматосенсорной коры через мозолистое тело и короткие ассоциативные волокна от прилежащей первичной моторной коры. Множество волокон от моторной коры служат коллатералями корково-спинномозговых волокон, идущих к переднему рогу спинного мозга, и участвуют в создании чувства веса при подъеме объектов (потерю этого чувства называют барагнозией).

Поражение соматосенсорной коры часто возникает при окклюзии ветви средней мозговой артерии, кровоснабжающей сенсорную кору. Корковый тип потери чувствительности в этом случае проявляется ослаблением чувствительности на противоположной стороне тела, особенно на предплечье и кисти (проявляющимся повышением порога возбудимости, ослаблением дискриминационного чувства, нарушением вибрационного чувства и чувства положения), а также нарушением распознавания более сложных видов чувствительности, несмотря на сохранность болевой, температурной и даже вибрационной чувствительности. Поражение может проявляться невозможностью распознавания знакомых объектов при помещении их в руку (астереогноз), невозможностью распознавать фигуры и цифры, рисуемые на руке (аграфестезия), или неспособностью опознать одновременно два тактильных стимула, приложенных к противоположным частям тела (экстинкция). Потерю способности распознавать размер и форму объектов в результате поражения на уровне между чувствительными рецепторами и корой обозначают термином стереоанестезия.

Сложные неврологические нарушения при повреждении теменной доли, обычно недоминантного полушария (чаще правого), обозначают общим термином агнозии (тактильная агнозия - неспособность распознать форму объекта при его ощупывании, анозогнозия-отрицание болезни или неврологических нарушений, аутопагнозия-неспособность к определению, ориентированию и распознаванию собственных частей тела). Повреждение теменной доли (чаще левой) может, кроме того, приводить к апраксии-невозможности совершения целенаправленных движений или правильного использования объекта, несмотря на сохранную моторику и осознанное восприятие.

3. Эфферентные волокна . К эфферентным волокнам соматосенсорной коры относят ассоциативные, комиссуральные и проекционные волокна. Ассоциативные волокна направляются к моторной коре на той же стороне к полю 5 и полю 40 (надкраевой извилине). Комиссуральные волокна проходят к соматосенсорной коре противоположных полушарий. Проекционные волокна опускаются в заднем отделе пирамидного пути и оканчиваются на вставочных нейронах сенсорных релейных ядер (вентральное заднее ядро таламуса той же стороны), а также проходят в заднем канатике к заднему рогу спинного мозга на противоположной стороне. Передача чувствительной информации по спинно-таламическому проводящему пути может ингибироваться (тормозными вставочными нейронами) при интенсивных физических нагрузках, тогда как проведение через задний канатик (в составе медиального лемнискового пути) может усиливаться (возбуждающими вставочными нейронами) при исследовательской активности, например при пальпации рельефной поверхности.

б) Ассоциативная соматосенсорная кора (поле 5) . Этим термином обозначают поле 5, расположенное сразу за соматосенсорной корой. Активация большей части этой области происходит при совершении хватательных движений противоположной кистью под контролем зрения (дорсальный зрительный путь описан ниже).

в) Верхняя теменная долька (поле 7) . Верхняя теменная долька функционально соответствует полю 7. Нижний отдел поля 7 получает информацию от полей 1, 2 и 5. После получения тактильной и проприоцептивной информации от кожи, мышц и суставов поле 7 активирует собственную «память», осуществляющую распознавание объектов, взятых в (противоположную) руку, позволяя, таким образом, идентифицировать объект без помощи зрения.
Верхнюю часть поля 7 составляют клетки зрительного проводящего пути, отвечающего на вопрос «Где?».

г) Нижняя теменная долька (поля 39 и 40) . Нижняя теменная долька образована полями 39 (угловая извилина) и 40 (надкраевая извилина). Оба поля отвечают за речь - функцию преимущественно левого полушария, описанную в отдельной статье на сайте; нарушение речи, вызванное поражением мозга, носит название афазия. (Поражение правого полушария может приводить к развитию неспособности понимания или использования эмоций при устной речи - апрозодии.)

д) Межтеменная кора . Повышенная активация коры в стенках межтеменной борозды возникает при выполнении задач, требующих зрительно-двигательной координации (например, при приближении и захвате объектов, идентифицированных полем зрения противоположной стороны, с последующим зрительным и тактильным пространственным анализом). К этой зоне относят также теменное глазодвигательное поле.

е) Вторичная соматосенсорная кора . На медиальной поверхности теменной покрышки островка расположена небольшая вторичная соматосенсорная кора (SII). Она получает ноцицептивные пути от таламуса и ярко светится на ПЭТ-снимках головного мозга при периферической болевой стимуляции. SII, вероятно, действует совместно с SI при обработке дискриминационной чувствительности или локализации болезненного участка.

Пластичность соматосенсорной коры. Можно очень точно выделить зоны отдельных пальцев кисти в соматосенсорной коре обезьян посредством записи электрических ответов колонн кортикальных клеток на тактильную стимуляцию поочередно каждого пальца. Эти пальцевые карты могут быть другими при оценке периферической чувствительности, на что указывают следующие данные.

Срединный нерв иннервирует ладонную поверхность латеральных трех с половиной пальцев кисти, а лучевой нерв иннервирует их тыльные поверхности. При повреждении срединного нерва увеличивается зона представления в коре тыльной поверхности кисти, захватывая зону ладонной чувствительности. Расширение зоны начинается через несколько часов и прогрессивно увеличивается в течение нескольких недель. При восстановлении функции срединного нерва, кортикальная карта возвращается к норме.

При денервации среднего пальца соответствующая корковая зона в течение нескольких часов не отвечает на стимуляцию, а затем прогрессивно (в течение нескольких недель) замещается зонами II и IV пальцев.

При постоянной стимуляции кожи подушечки пальца (например, при соприкосновении с вращающимся диском для приготовления гранул пищи) представление этого пальца в коре может увеличиваться в два раза в течение нескольких недель, возвращаясь к норме после прекращения эксперимента.

Эти исследования показывают, что соматосенсорные карты обладают пластичностью и изменяются при нарушении периферической иннервации. Чисто анатомический подход (например, разрастание нервных волокон в центральной или периферической нервной системе) не позволяет объяснить ранние изменения, развивающиеся в течение нескольких часов: наоборот, их следует рассматривать как основу сенсорной конкуренции.

ж) Сенсорная конкуренция . В сенсорных картах, созданных на уровне задних рогов, задних канатиков, таламуса и соматосенсорной коры, выявлены признаки наложения (анатомического перекрытия). Например, таламо-корковые соматосенсорные зоны III пальца накладываются на зоны II и IV пальцев. В зоне наложения корковые колонны получают информацию от двух соседних пальцев. Вставочные корковые нейроны могут тормозить слабо возбужденные периферические колонны. В эксперименте (например, на кошках) число колонн, отвечающих на направленную таламо-корковую стимуляцию, может быть увеличено местным воздействием антагонистов ГАМК (бикукуллин), подавляющих периферическое торможение. Результат отсутствия периферического сенсорного поля может быть различным.

Если одна группа таламо-корковых нейронов перестает возбуждаться в результате потери сенсорной стимуляции, она больше не подвергается периферическому торможению, и корковые колонны на ее территории «захватываются» соседними, активными группами нейронов. В период расширения синаптические связи между клетками подвергаются как кратковременным, так и долговременным изменениям, что отражает процесс обучения.

На соматосенсорной карте тела человека пальцы расположены рядом с лицом. В нескольких документально подтвержденных случаях ампутации верхней конечности у пациентов впоследствии возникало ощущение «фантомного пальца» при прикосновении предметом к лицу на стороне ампутации (например, гребешком, зажатым другой рукой). Это ложное восприятие может появляться в течение двух недель после ампутации. Его можно объяснить прекращением предсуществующего наложения таламо-корковых нейронов.

з) Зрительная кора (поля 17, 18, 19) . К зрительной коре относят первичную зрительную кору (поле 17) и ассоциативную зрительную кору.

1. Первичная зрительная кора (поле 17) . Первичная зрительная кора - место окончания коленчато-шпорного тракта, через который передается информация от ипсилатеральных половин обеих сетчаток и, следовательно, от зрительного поля противоположного глаза. Этот миелинизированный путь образует в первичной зрительной коре бледные зрительные полоски (линии Геннари) перед созданием контактов с шиповатыми зернистыми клетками в высокозернистом слое IV. Зрительные полоски (впервые обнаруженные студентом-медиком Франческо Дженнари в 1775 г.) дали альтернативное название для поля 17 - полосатая кора.

Шиповатые зернистые клетки находятся в глазных доминантных колоннах, названных так, поскольку к чередующимся колоннам попеременно подходят импульсы от левого и правого глаз. Если можно было бы отдельно промаркировать волокна от каждого глаза и посмотреть на зрительную кору снаружи, эти чередующиеся колонны образовывали бы пучки в форме витков (наподобие отпечатков пальцев), где каждый из пучков отвечал бы на стимуляцию только одного из глаз. Коленчато-шпорный тракт представлен в коре таким образом, что соответствующие точки от двух сетчаток расположены в соседних колоннах на одной линии. Такое расположение идеально подходит для бинокулярного зрения, так как серия этих колонн образует модули, в краях которых происходит обработка информации от обоих глаз.

Недифференцированные импульсы от латерального коленчатого ядра «преобразуются» в ряд свойств в слое VI первичной зрительной коры. Этот процесс происходит благодаря распределению нейронов слоя VI в функциональные колонны. Взаимосвязи между этими нейронами, детально показанные на рисунке ниже, обеспечивают определение контуров предметов, их размер, направление движения и направленность зрительных раздражителей. Комплексная обработка происходит путем дальнейших корковых взаимодействий.


Представление избирательного действия нейронов первичной зрительной коры (V1), получающей информацию от латерального коленчатого тела.
Запись нейрональной активности взрослой кошки (слева) показывает высокую избирательность для специфических ориентаций стимулов (показаны наклоном линий) и различную степень доминирования противоположного (красный) и ипсилатерального (зеленый) глаз с множеством клеток, регулирующих деятельность обоих глаз.
Как ориентация, так и глазодоминирование (нейроны, в большей степени отвечающие на стимуляцию от одного глаза, чем от другого) распределены по колоннам. В колоннах, реагирующих на определенную ориентацию стимула, участвуют все клеточные слои, тогда как глазодоминирование происходит преимущественно в слое 4, где большое число клеток отвечает за монокулярное зрение. Поле V1 у мыши (справа) не имеет колончатого строения для ориентации или глазодоминирования.
Однако все же имеется высокая избирательность нейронов к ориентации, а также в некоторой степени отмечено глазодоминирование, но со смещением к противоположному глазу.

2. Пластичность первичной зрительной коры . Базовая схема и соотношение глазных доминантных колонок закладывается и устанавливается еще до рождения и сохраняется у животных, обитающих в полной темноте. При развитии в детстве слепоты на один глаз соответствующие корковые колонны остаются небольшими, а размеры корковых колонн видящего глаза увеличиваются.

3. Ассоциативная зрительная кора (поля 18 и 19) . Ассоциативная зрительная кора представлена зонами 18 и 19, имеющими также общее название перистриарная, или экстрастриарная, кора. К ней подходят афферентные волокна преимущественно от поля 17, а также небольшое количество прямых таламических волокон от подушки таламуса. Клеточные колонны отвечают за обработку отдельных признаков. Часть колонн обрабатывает геометрические формы, часть отвечает за обработку цвета, другая часть - за бинокулярное (пространственное) зрение, а некоторые колонны - за более сложные задачи (распознавание лиц).

Большое количество перистриальных колонн имеют крупные рецепторные поля. Некоторые из них захватывают физиологическое слепое пятно (головку зрительного нерва) и могут отвечать за «маскирование» слепого пятна при монокулярном зрении.

Волокна, идущие от подушки таламуса к ассоциативной зрительной коре, считают частью проводящего пути, принимающего участие в «слепозрении» (остаточная обработка зрительной информации после разрушения первичной зрительной коры). Это удивительное состояние наблюдают у пациентов после тромбоза шпорной ветви задней мозговой артерии. Несмотря на полное отсутствие противоположного зрительного поля, эти пациенты, тем не менее, способны следить за движущимся пучком света без его восприятия, только лишь по «ощущению» его присутствия. Истинный проводящий путь остается неустановленным; к вероятным путям относят прохождение зрительных волокон через медиальный корешок зрительного тракта или верхний холмик, или от подушки таламуса к ассоциативной зрительной коре, или корковый путь от латерального коленчатого тела.

Наиболее функционально сложные модули зрительной ассоциативной коры расположены в латеральном и медиальном отделах поля 19. Латеральную группу модулей неформально относят к дорсальному «Где?» зрительному проводящему пути. Медиальная группа принадлежит к вентральному проводящему пути, отвечающему на вопрос «Что?»; оба проводящих пути функционируют одновременно, их не следует рассматривать отдельно друг от друга.

4. . На основании записей электрической активности у испуганных обезьян и при ПЭТ-исследовании у людей-добровольцев было установлено, что латеральная часть поля 19 отвечает преимущественно за регистрацию движений, происходящих в противоположной половине поля зрения. Основная часть волокон от этого поля направляется к полю 7, обозначаемому клиницистами как задняя теменная кора. Помимо регистрации движений, поле 7 отвечает также за стереоскопическое (пространственное) зрение, которое вместе с пространственным чувством позволяет определять положение объектов относительно друг друга.

Поле 7 получает волокна от подушки таламуса, участвующие в «слепозрении», и взаимодействует через верхний продольный пучок с ипсилатеральным фронтальным глазодвигательным полем и премоторной корой.

Активация клеточных колонн поля 7 у обезьян происходит, когда важный объект (например, фрукт) появляется в противоположной половине зрительного поля. Через ассоциативные волокна возбужденные клеточные колонны повышают частоту фоновой активности колонн во фронтальном глазодвигательном поле и премоторной коре, но без инициации движения. Этот эффект называют скрытым вниманием, или скрытой ориентацией. Внимание (ориентация) становится открытым, когда животное отвечает саккадическими (высокочастотными содружественными движениями глаз) и хватательным движением в направлении объекта (или без него). При поражении поля 7 двигательные реакции на важные объекты возникают с опозданием, и хватательные движения противоположной руки становятся неточными.

При ПЭТ-исследовании у людей-добровольцев было установлено повышение коркового метаболизма в поле 7 в ответ на движение объекта в противоположной половине зрительного поля. При движении противоположной руки к объекту одновременно возбуждаются поля 5 и 7. У людей (как и у обезьян) поражение поля 7 сопровождается неуклюжими, неточными движениями в противоположном зрительном поле. Комплекс «Где?» является также комплексом «Как?», поскольку пространственно-зрительная информация используется двигательной системой для создания направленных движений.

При появлении в поле зрения объекта, представляющего особый интерес, у добровольцев активируются все дополнительные зоны коры. Дорсолатеральная префронтальная кора (ДЛПФК, ориентировочно соответствует полю 46 по Бродману) - важная зона принятия решений, особенно решения о приближении или отступлении, показана на рисунке ниже и также упомянута ниже. На отдельном рисунке показан участок коры передней поясной извилины. Эта область подробно рассмотрена в отдельной статье на сайте, но упомянута здесь в связи с тем, что ее возбуждение дорсолатеральной корой возникает, когда человек уделяет внимание зрительной задаче.


Латеральная поверхность правого полушария, показан ход зрительного «Где?» проводящего пути от зрительной коры к теменной и лобной долям.
Звездочкой указана область, отвечающая за обнаружение движений в левом зрительном поле.
Активность правого фронтального глазодвигательного поля облегчает саккадические движения к левому зрительному полю.

5. . Вентральный зрительный проводящий путь соединяется с переднемедиальным отделом поля 19, расположенным преимущественно в веретеновидной извилине - части затылочно-височной извилины. Считают, что эта область участвует в распознавании трех типов зрительных признаков (нейроны этой зоны в дальнейшем обрабатывают данные признаки в зависимости от когнитивных и поведенческих аспектов), указанных на рисунке ниже.

В относительно латеральном отделе расположены модули, определяющие форму всех типов объектов, включая форму букв. Это центр общей (категориальной/классической) идентификации объектов (например, собаки как таковой, без уточнения).

В среднем отделе расположены модули, специфическая функция которых заключается в распознавании человеческих лиц.

В относительно медиальном отделе находится отдел распознавания цвета, необходимый для определения всех цветов, кроме черного и белого. Ахроматопсия (цветовая слепота может развиться при поражении любого отдела зрительного проводящего пути) может возникать вследствие стойкого снижения артериального давления в обеих задних мозговых артериях, вызванного, например, эмболией в верхушку основного ствола базилярной артерии, сопровождающейся развитием инфаркта мозга. Такие пациенты видят мир черно-белым (в оттенках серого).

Распознавание отдельных объектов и лиц - функция переднего отдела «Что?» зрительного проводящего пути в нижней височной извилине (поле 20) и коре полюса височной доли (поле 38). Обе эти области активируются, например, при распознавании лица Марии или моей собаки. Неспособность к распознаванию лиц (тип агнозии, называемый прозопагнозией) считают частым и тревожным признаком болезни Альцгеймера, когда пациент прекращает узнавать лица членов семьи, несмотря на сохранение способности к распознаванию общих объектов.

Угрожающие взгляды или лица приводят к возбуждению зонами 20 и 38 миндалевидного тела, особенно в правом полушарии; правое миндалевидное тело, в свою очередь, возбуждает отвечающую за страх правую орбитофронтальную кору, выделенную сиреневым цветом на рисунке ниже.

Как происходит активация зрительной ассоциативной коры, например, при принятии решения найти яблоко в корзине с фруктами или определенное слово на странице текста? При ПЭТ-исследовании активация лобной доли происходила во всех случаях, когда для решения задачи требовались руки. При решении зрительной задачи, связанной с обработкой цвета и формы, особенно активна ДЛПФК. При зрительном поиске роль лобной коры сводится к активации зрительной памяти в ассоциативной зрительной коре и высвобождению соответствующих образов в момент поиска. Происходит также возбуждение переднего отдела поясной коры. Помимо поступления информации от первичной к ассоциативной зрительной коре по дорсальному и вентральному проводящим путям, имеется также «нисходящий» путь, опосредующий осознанное восприятие и поведенческие реакции (например, внимание и ожидание результата).

Этот путь участвует в обработке зрительной информации на ранних этапах, что приводит к стабилизации зрительной картины (внутренней модели внешнего мира, сохраняющейся благодаря обработке вестибулярной, соматосенсорной и зрительной информации), несмотря на постоянные движения глаз, а также облегчает восприятие зрительной картины и придает различные смыслы в зависимости от модели поведения.

(А) Правое полушарие, вид с медиальной стороны, показан зрительный «Что?» проводящий путь.
Звездочкой отмечена область зрительной идентификации в веретеновидной извилине на нижней поверхности.
Вентральная область 19 увеличена на рис. (Б).
ДМЗ - дополнительная моторная зона.

6. Терминология V1-V5 . Специалисты в области исследования зрения используют при обработке корковой зрительной информации следующие обозначения.
V1 соответствует полю 17 по Бродману.
V2 и V3 соответствуют полям Бродмана 18 и 19 соответственно.
V4 включает три группы идентификационных модулей в веретеновидной извилине.
V5 обозначает модули регистрации движений в латеральной затылочной коре (переднелатеральный отдел поля 19 по Бродману) - зрительный путь «Где?».

и) Слуховая кора (поля 41,42 и 22) . Первичная слуховая кора расположена в передней поперечной височной извилине Гешля, описанной в отдельной статье на сайте. Извилина Гешля соответствует полям 41 и 42 на верхней поверхности верхней височной извилины; большая часть информации от медиального коленчатого тела направляется к полю 41. Колончатая организация коры предположительно представлена в виде одночастотных полос, т.е. каждая из полос соответствует определенной частоте тона. Высокие частоты активируют латеральные полосы в извилине Гешля, а низкие частоты - медиальные полосы. В связи с неполным перекрестом центральных слуховых путей в стволе мозга (глава 20) каждое ухо имеет двустороннее представительство в коре. По данным исследований, первичная кора одинаково отвечает на монофоническую стимуляцию каждого слухового пути, однако кора противоположной стороны лучше отвечает на одновременную стимуляцию обоих слуховых путей.

Ассоциативная слуховая кора соответствует полю 22, обрабатывающему речь. Одновременная обработка зрительной и слуховой информации происходит в полимодальной коре, ограниченной верхней височной бороздой (соединение полей 21 и 22).

Удаление слуховой коры с одной стороны (например, при опухолевом процессе) не приводит к заметному ухудшению звуковосприятия. Единственный значительный дефект - потеря стереоакузии: при исследовании у пациента возникают трудности с определением локализации и расстояния от источника звука.

  • 7. Синапсы: классификация и строение. Понятие о нервном центре. Свойства нервного центра.
  • 8. Цитоархитектоника коры больших полушарий. Первичные, вторичные и третичные корковые зоны.
  • 9. Строение и функции продолговатого мозга, моста. Ретикулярная формация.
  • 10. Строение и функции мозжечка, ножек мозга, четверохолмия.
  • 11. Строение и функции промежуточного мозга.
  • 12. Строение и функции долей больших полушарий головного мозга. Функциональное назначение подкорковых узлов.
  • 13. Строение и функции спинного мозга. Зоны сегментарной иннервации.
  • 14. Простейшая спинномозговая рефлекторная дуга. Важнейшие рефлексы, замыкающиеся в спинном мозге.
  • 15. Роль вегетативной нервной системы в регуляции гомеостаза и адаптации к среде.
  • 16. Строение, функции и симптомы поражения симпатического отдела вегетативной нервной системы.
  • 17. Строение, функции и симптомы поражения парасимпатического отдела вегетативной нервной системы.
  • 18. Симптомы поражения и методы исследования вегетативной нервной системы.
  • 19. Регуляция двигательного акта. Произвольные и непроизвольные движения.
  • 20. Пирамидная системы, ее центры и проводящие пути. Признаки центрального и периферического паралича.
  • 21. Строение и функции экстрапирамидной системы. Симптомы поражения ее стриарного и паллидарного отделов.
  • 22. Гиперкинезы, их клиническая характеристика. Речевые нарушения при гиперкинезах.
  • 23. Мозжечок: строение, функции, симптомы поражения. Речевые нарушения при поражении мозжечка.
  • 24. Чувствительность, ее виды. Строение проводящих путей чувствительности.
  • 25. Синдромы чувствительных расстройств, их диагностическое значение.
  • 26. Методы исследования чувствительности.
  • 27. Строение, функции, симптомы поражения и методы исследования чувствительных черепных нервов.
  • VIII пара (преддверно-улитковый нерв). Состоит из двух функционально различных частей – слуховой (улитковой) и вестибулярной (преддверной).
  • 28. Черепные нервы глазодвигательной группы: строение, функции, симптомы поражения.
  • 29. Характеристика лицевого и тройничного нервов.
  • 30. Строение, функции, симптомы поражения и методы исследования черепных нервов каудальной группы (языкоглоточный, блуждающий, подъязычный нервы).
  • 31. Сравнительная характеристика бульбарного и псевдобульбарного паралича. Речевые нарушения бульбарного и псевдобульбарного генеза.
  • 32. Локализация функций в цнс. Основные центры коры больших полушарий.
  • Основные центры коры больших полушарий головного мозга человека
  • 33. Гнозис и его расстройства. Зрительные, слуховые, сенситивные, вкусовые, обонятельные агнозии. Диагностика агнозий.
  • 34. Праскис, методы его исследования. Характеристика апраксий.
  • 35. Память, мышление, сознание: виды их нарушений и методы исследования.
  • 36. Мозговая организация речевой функциональной системы.
  • 37. Речевые расстройства в детском возрасте, связанные с органическим поражением цнс: классификация и клиническая диагностика.
  • 38. Афазия: этиология, патогенез, клинические формы.
  • 39. Алалия: этиология и патогенез. Характеристика моторной и сенсорной алалии, влияние на психическое развитие детей.
  • 40. Дизартрия: этиология и патогенез. Характеристика видов дизартрии.
  • 41. Понятие о невропатологических симптомах и синдромах, их диагностическое значение.
  • 42. Пути установления неврологического диагноза: жалобы, анамнез, неврологический осмотр.
  • 43.Современные методы исследования нервной системы в норме и патологии.
  • 44. Детские церебральные параличи как неврологическая и дефектологическая проблема. Этиологические факторы дцп
  • 45. Характеристика основных клинических форм дцп
  • 46. Нарушений движений, речи и интеллекта при дцп. Принципы абилитации больных дцп
  • 47. Травмы головного мозга у детей: классификация, симптомы, диагностика.
  • Классификация чмт Существует несколько принципов классификации черепно-мозговой травмы в зависимости от повреждения черепа, по характеру повреждения головного мозга, по степени тяжести.
  • 48. Остаточные явления после мозговой травмы. Лечение и реабилитация черепно-мозговой травмы.
  • 49. Этиология, патогенез и классификация эпилепсии. Основные клинические формы.
  • Основные причины симптоматической эпилепсии:
  • При распространении импульса возможны три варианта:
  • 50. Характеристика большого и малого судорожных припадков. Оказание первой помощи.
  • Первая помощь при судорожном и/или эпилептическом приступе
  • 51. Неврозы: причины, классификация, основные формы.
  • 52. Недержание мочи и кала у детей: этиология, патогенез, клинические формы, меры профилактики.
  • 53. Этиология, патогенез и клинические симптомы менингита.
  • 54. Энцефалиты: клинические формы, диагностика, исходы, остаточные явления.
  • 55. Полиомиелит: этиология, формы, симптомы, остаточные явления.
  • Патогенез полиомиелита
  • Клиника полиомиелита
  • 56.Аномалии развития нервной системы. Клиническая характеристика микроцефалии, гидроцефалии.
  • 57. Поражение нервной системы при хромосомных болезнях и наследственных болезнях обмена веществ.
  • 58. Сосудистые заболевания головного мозга: этиология, патогенез, клинические формы, методы профилактики.
  • 59. Острые нарушения мозгового кровообращения: формы, симптомы, исходы. Нарушения речи при инсультах.
  • 60. Принципы абилитации и реабилитации детей с заболеваниями нервной системы и органов чувств.
  • Основные центры коры больших полушарий головного мозга человека

    Лобная доля . 1)Двигательный анализатор располагается в передней центральной извилине и парацентральной дольке.

    2)Центр поворота глаз и головы в противоположную сторону расположен в средней лобной извилине в премоторной области. Работа его тесно связана с системой заднего продольного пучка, вестибулярными ядрами, образованиями стриопаллидарной системы, участвующей в регуляции торсии, а также с корковым отделом зрительного анализатора. 3)В задних отделах верхней лобной извилины представлен центр, дающий начало лобно-мостомозжечковому пути . Эта область коры больших полушарии участвует в обеспечении координации движений, связанных с прямохождением, сохранением равновесия стоя, сидя и регулирует работу противоположного полушария мозжечка. 4)Моторный центр речи (центр речевого праксиса ) находится в задней части нижней лобной извилины-извилине Брока. Центр обеспечивает анализ кинестетической импульсации от мышц речедвигательного аппарата, хранение и реализацию «образов» речевых автоматизмов, формирование устной речи, тесно связан с расположением кзади от него нижним отделом передней центральной извилины (проекционной зоной губ, языка и гортани) и с находящимся кпереди от него музыкальным моторным центром. 5) Музыкальный моторный центр обеспечивает определенную тональность, модуляцию речи, способность составлять музыкальные фразы и петь. 6)Центр письменной речи - в заднем отделе средней лобной извилины в непосредственной близости от проекционной корковой зоны руки. Центр обеспечивает автоматизм письма и функционально связан с центром Брока.

    Теменная доля. 1)Центр кожного анализатора располагается в задней центральной извилине и коре верхней теменной области. В задней центральной извилине проецируется тактильная, болевая, температурная чувствительность противоположной половины тела. В верхних отделах проецируется чувствительноси, воги, в нижних отделах- чувствительность лица. Представлены элементы глубокой чувствительности. Кзади от средних отделов задней центральной извилины располагается центр стереогнозиса, обеспечивающего способность узнавания предметов на ощупь. 2)Кзади от верхних отделов задней центральной извилины располагается центр, обеспечивающий способность узнавания собственного тела , его частей, их пропорции и взаимоположения. 3)Центр праксиса локализуется в нижней теменной дольке слева, надкраевой извилине. Центр обеспечивает хранение и реализацию образов двигательных автоматизмов (функции праксиса). 4)В нижних отделах передней и задней центральных извилин располагается центр анализатора интероцептивных импульсов внутренних органов и сосудов. Центр имеет тесные связи с подкорковыми вегетативными образованиями. Височная доля . 1)Центр слухового анализатора располагается в средней части верхней височной извилины, на поверхности, обращенной к островку (извилина Гешля). Указанные образования обеспечивают проекцию улитки, а также хранение и распознавание слуховых образов. 2)Центр вестибулярного анализатора располагается в нижних отделах наружной поверхности височной доли, является проекционным, находится в тесной связи с нижнебазальными отделами височных долей, дающими начало затылочно-височному корково-мостомозжечковому пути. 3)Центр обонятельного анализатора находится в филогенетически наиболее древней части коры мозга- в крючке и аммоновом роге и обеспечивает проекционную функцию, а также хранение и распознавание обонятельных образов. 4)Центр вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора, т. е. в крючке и аммоновом роге. но, кроме того, в нижнем отделе задней центральной извилины, а также в островке. Как и обонятельный анализатор, центр обеспечивает проекционную функцию, хранение и распознавание вкусовых обозов. 5)Акустико-гностический сенсорный центр речи (центр Вернике ) локализуется в задних отделах верхней височной извилины слева, в глубине латеральной борозды. Центр обеспечивает распознавшие и хранение звуковых образов устной речи как собственной, так и чужой. В непосредственной близости от центра Вернике располагается центр, обеспечивающий распознавание музыкальных звуков, мелодий. Затылочная доля. 1)Центр зрительного анализатора располагается в затылочной доле, является проекционной зрительной зоной, обеспечивает хранение и распознавание зрительных образов, зрительную ориентацию в непривычной обстановке. На границе височной, затылочной и теменной долей располагается центр анализатора письменной речи, который тесно связан с центром Вернике височной доли, с центром зрительного анализатора затылочной доли, а также с центрами теменной доли. Центр чтения обеспечивает распознавание и хранение образов письменной речи.

    "


    Рекомендуем почитать

    Наверх