Капиллярные явления высота поднятия жидкости в капилляре. Свойства жидкого состояния

Диеты 26.04.2024

Жидкостями называются вещества, находящиеся в конденсированном состоянии, которое является промежуточным между твердым кристаллическим состоянием и газообразным состоянием.

Область существования жидкостей ограничена со стороны высоких температур переходом ее в газообразное состояние, со стороны низких температур – переходом в твердое состояние.

В жидкостях расстояние между молекулами значительно меньше, чем в газах (плотность жидкостей в ~ 6000 раз больше плотности насыщенного пара вдали от критической температуры) (рис.1).

Рис.1. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10 7 раз

Следовательно, силы межмолекулярного взаимодействия в жидкостях, в отличие от газов, являются основным фактором, который определяет свойства жидкостей. Поэтому жидкости, как и твердые тела, сохраняют свой объем и имеют свободную поверхность. Подобно твердым телам жидкости характеризуются очень малой сжимаемостью и сопротивляются растяжению.

Однако силы связей между молекулами жидкости не настолько велики, чтобы препятствовать скольжению слоев жидкости относительно друг друга. Поэтому жидкости, как и газы, обладают текучестью. В поле силы тяжести жидкости принимают форму сосуда, в который они налиты.

Свойства веществ определяются движением и взаимодействием частиц, из которых они состоят.

В газах в столкновениях участвуют в основном две молекулы. Следовательно, теория газов сводится к решению задачи двух тел, которая может быть решена точно. В твердых телах молекулы совершают колебательное движение в узлах кристаллической решетки в периодическом поле, созданном другими молекулами. Такая задача поведения частиц в периодическом поле так же решается точно.

В жидкостях каждую молекулу окружают несколько других. Задача подобного типа (задача многих тел) в общем, виде, независимо от природы молекул, характера их расположения до сих пор точно не решена.

Опыты по дифракции рентгеновских лучей, нейтронов, электронов помогли определить строение жидкостей. В отличие от кристаллов, в которых наблюдается дальний порядок (регулярность размещения частиц в больших объемах), в жидкостях на расстояниях порядка 3 – 4 молекулярных диаметров порядок в размещении молекул нарушается. Следовательно, в жидкостях наблюдается так называемый ближний порядок в размещении молекул (рис.2):

Рис.2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

В жидкостях молекулы совершают малые колебания в пределах ограниченных межмолекулярными расстояниями. Однако время от времени в результате флуктуаций молекула может получить от соседних молекул энергию, которой хватит, чтобы скачком переместиться в новое положение равновесия. В новом положении равновесия молекула будет находиться некоторое время, пока снова, в результате флуктуаций не получит энергию необходимую для скачка. Скачок молекулы происходит на расстояние сравнимое с размерами молекулы. Колебания, которые сменяются скачками, представляют собой тепловое движение молекул жидкости.

Среднее время, которое молекула находится в состоянии равновесия, называется временем релаксации . При повышении температуры увеличивается энергия молекул, следовательно, увеличивается вероятность флуктуаций, время релаксации при этом уменьшается:

где τ – время релаксации, B – коэффициент, имеющий смысл периода колебаний молекулы, W энергия активации молекулы, т.е. энергия необходимая для совершения скачка молекулы .

Внутреннее трение в жидкостях, как и в газах, возникает при движении слоев жидкости из-за переноса импульса в направлении нормали к направлению движения слоев жидкости. Перенос импульса от слоя к слою происходит и при скачках молекул. Однако, в основном, импульс переносится из-за взаимодействия (притяжения) молекул соседних слоев.

В соответствии с механизмом теплового движения молекул жидкости, зависимость коэффициента вязкости от температуры имеет вид:

где A – коэффициент, зависящий от дальности скачка молекулы, частоты ее колебаний и температуры, W энергия активации .

Уравнение (2) – формула Френкеля-Андраде . Температурная зависимость коэффициента вязкости в основном определяется экспоненциальным множителем. Величина обратная вязкости называется текучестью . При понижении температуры вязкость некоторых жидкостей увеличивается настолько, что они практически перестают течь, образуя аморфные тела (стекло, пластмассы, смолы и т.д.).

Каждая молекула жидкости взаимодействует с соседними молекулами, которые находятся в зоне действия ее молекулярных сил. Результаты этого взаимодействия неодинаковые для молекул внутри жидкости и на поверхности жидкости. Молекула, находящаяся внутри жидкости взаимодействует с соседними молекулами окружающими ее и, равнодействующая сила, которая на нее действует, равна нулю (рис.3).

Рис.3. Силы, действующие на молекулы жидкости

Молекулы поверхностного слоя находятся при других условиях. Плотность пара над жидкостью значительно меньше плотности жидкости. Поэтому на каждую молекулу поверхностного слоя действует равнодействующая сила, направленная по нормали внутрь жидкости (рис.3). Поверхностный слой оказывает давление на остальную жидкость подобно упругой пленке. Молекулы, лежащие в этом слое также притягиваются друг к другу (рис.4).

Рис.4. Взаимодействие молекул поверхностного слоя

Это взаимодействие создает силы направленные по касательной к поверхности жидкости и стремящиеся сократить поверхность жидкости.

Если на поверхности жидкости провести произвольную линию, то по нормали к линии и по касательной к поверхности будут действовать силы поверхностного натяжения. Величина этих сил пропорциональна числу молекул, находящихся вдоль этой линии, следовательно, пропорциональна длине линии:

где σ – коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения :

Коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность жидкости .

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия примесей. Вещества, которые уменьшают поверхностное натяжение, называются поверхностно - активными (спирт, мыло, стиральный порошок и т.д.).

Чтобы увеличить площадь поверхности жидкости, необходимо выполнить работу против сил поверхностного натяжения. Определим величину этой работы. Пусть имеется рамка с жидкой пленкой (например, мыльной) и подвижной перекладиной (рис.5).

Рис.5. Подвижная сторона проволочной рамки находится в равновесии под действием внешней силы F вн и результирующей сил поверхностного натяжения F н

Растянем пленку силой F вн на dx . Очевидно:

где F н = σL –сила поверхностного натяжения. Тогда:

где dS = Ldx – приращение площади поверхности пленки. Из последнего уравнения:

Согласно (5) коэффициент поверхностного натяжения численно равен работе необходимой для увеличения площади поверхности на единицу при постоянной температуре. Из (5) видно, что σ может измеряться в Дж/м 2 .

Если жидкость граничит с другой жидкостью или с твердым телом, то из-за того, что плотности соприкасающихся веществ сравнимые, нельзя не обращать внимания на взаимодействие молекул жидкости с молекулами граничащих с ней веществ.

Если при контакте жидкости и твердого тела взаимодействие между их молекулами более сильное, чем взаимодействие между молекулами самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растекается по поверхности твердого тела. В этом случае жидкость смачивает твердое тело . Если взаимодействие между молекулами жидкости сильнее, чем взаимодействие между молекулами жидкости и твердого тела, то жидкость сокращает поверхность соприкосновения. В этом случае жидкость не смачивает твердое тело . Например: вода смачивает стекло, но не смачивает парафин, ртуть смачивает поверхности металлов, но не смачивает стекло.

Рис.6. Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Рассмотрим каплю жидкости на поверхности твердого тела (рис.7):

Рис.7. Схемы к расчету равновесия капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей: 1 - газ, 2 - жидкость, 3 - твердое тело

Форма капли определяется взаимодействием трех сред: газа – 1, жидкости – 2 и твердого тела – 3. У всех этих сред есть общая граница – окружность, ограничивающая каплю. На элемент длины dl этого контура, будут действовать силы поверхностного натяжения: F 12 = σ 12 dl – между газом и жидкостью, F 13 = σ 13 dl - между газом и твердым телом, F 23 = σ 23 dl – между жидкостью и твердым телом. Если dl =1 м, то F 12 = σ 12 , F 13 = σ 13 , F 23 = σ 23 . Рассмотрим случай когда:

Это значит, что <θ = π (рис.7,а). Окружность, которая ограничивает место соприкосновения жидкости с твердым телом, будет стягиваться в точку и капля принимает эллипсоидальную или сферическую форму. Это случай полного несмачивания. Полное несмачивание наблюдается также и в случае: σ 23 > σ 12 + σ 13 .

Другой граничный случай будет наблюдаться если:

Это значит, что <θ = 0 (рис.7,б), наблюдается полное смачивание. Полное смачивание будет наблюдаться и в случае когда: σ 13 > σ 12 + σ 23 . В этом случае равновесия не будет, ни при каких значениях угла θ , и жидкость будет растекаться по поверхности твердого тела вплоть до мономолекулярного слоя.

Если капля находится в равновесии, то равнодействующая всех сил, действующих на элемент длины контура равна нулю. Условие равновесия в этом случае:

Угол между касательными к поверхности твердого тела и к поверхности жидкости, который отсчитывается внутри жидкости , называется краевым углом .

Его значение определяется из (6):

(7)

Если σ 13 > σ 23 , то cosθ > 0, угол θ острый – имеет место частичное смачивание, если σ 13 < σ 23 , то cosθ < 0 – угол θ тупой – имеет место частичное несмачивание.

Кривизна поверхности жидкости приводит к возникновению добавочного давления, действующего на жидкость под этой поверхностью. Определим величину добавочного давления под искривленной поверхностью жидкости. Выделим на произвольной поверхности жидкости элемент площадью ∆S (рис.8):

Рис.8. К расчету величины добавочного давления

O O – нормаль к поверхности в точке O . Определим силы поверхностного натяжения действующие на элементы контура AB и CD . Силы поверхностного натяжения F и F ′, которые действуют на AB и CD , перпендикулярны AB и CD и направлены по касательной к поверхности ∆S . Разложим силу F на две составляющих f 1 и f ′. Сила f 1 параллельна O O и направлена внутрь жидкости. Эта сила увеличивает давление на внутренние области жидкости (вторая составляющая растягивает поверхность и на величину давления не влияет).

Определим величину этой силы.

Проведем плоскость перпендикулярную ∆S через точки M , O и N . Тогда R 1 – радиус кривизны поверхности в направлении этой плоскости. Проведем плоскость перпендикулярную ∆S и первой плоскости. Тогда R 2 – радиус кривизны поверхности в направлении этой плоскости. В общем случае R 1 ≠ R 2 . Определим составляющую f 1 . Из рисунка видно:

Учтем, что:

(8)

Силу F ′ разложим на такие же две составляющих и аналогично определим составляющую f 2 (на рисунке не показана):

(9)

Рассуждая аналогично, определим составляющие сил действующих на элементы AC и BD , учитывая, что вместо R 1 будет R 2:

(10)

Найдем сумму всех четырех сил, действующих на контур ABDC и оказывающих добавочное давление на внутренние области жидкости:

Определим величину добавочного давления:

Следовательно:

(11)

Уравнение (11) называется формулой Лапласа . Добавочное давление, которое оказывает искривленная поверхность жидкости на внутренние области жидкости, называется лапласовским давлением .

Лапласовское давление очевидно направлено к центру кривизны поверхности. Поэтому в случае выпуклой поверхности оно направлено внутрь жидкости и добавляется к нормальному давлению жидкости. В случае вогнутой поверхности жидкость будет находиться под меньшим давлением, чем жидкость под плоской поверхностью, т.к. лапласовское давление направлено за пределы жидкости.

Если поверхность сферическая, то: R 1 = R 2 = R :

Если поверхность цилиндрическая, то: R 1 = R , R 2 = ∞:

Если поверхность плоская то: R 1 = ∞, R 2 = ∞:

Если поверхностей две, например, мыльный пузырь, то лапласовское давление удваивается.

С явлениями смачивания и несмачивания связаны так называемые капиллярные явления . Если в жидкость опустить капилляр (трубка малого диаметра), то поверхность жидкости в капилляре принимает вогнутую форму, близкую к сферической в случае смачивания и выпуклую в случае несмачивания. Такие поверхности называются менисками .

Капиллярами называются такие трубки, в которых радиус мениска примерно равен радиусу трубки.

Рис. 9. Капилляр в смачивающей (а) и не смачивающей (б) жидкостях

Рис.10. Подъем жидкости в капилляре в случае смачивания

В случае вогнутого мениска добавочное давление направленно к центру кривизны вне жидкости. Поэтому давление под мениском меньше давления под плоской поверхностью жидкости в сосуде на величину лапласовского давления:

Следовательно, лапласовское давление вызовет подъем жидкости в капилляре на такую высоту h (рис.9), пока гидростатическое давление столба жидкости не уравновесит лапласовское давление:

Из последнего уравнения:

(12)

Уравнение (12) называется формулой Жюрена . Если жидкость несмачивает стенки капилляра, мениск выпуклый, cosθ < 0, то жидкость в этом случае опускается ниже уровня жидкости в сосуде на такую же глубину h согласно формуле (12) (рис.9).

Поверхностное натяжение, смачивание, капиллярные явления Молекула жидкости, находящаяся внутри жидкости, взаимодействует с окружающими её молекулами. Такое взаимодействие симметрично и равнодействующая их равна нулю. Для молекулы, находящейся вблизи поверхности, симметрия нарушается и возникает сила некомпенсированная другими молекулами, направленная внутрь жидкости. При этом потенциальная энергия для молекул, находящихся на поверхности пропорциональна её площади. Поверхностное натяжение σ (коэффициент) представляет собой отношение изменения свободной поверхностной энергии жидкости, отнесенной к изменению единицы площади поверхностного слоя: σ = ΔЕ/Δω, Дж/м2 или сила поверхностного натяжения, отнесенная к единице длины на свободной поверхности: Условием устойчивого равновесия жидкостей является минимум свободной энергии жидкости. В условиях отсутствия внешних сил и заданного объема, жидкость стремится принять минимальную площадь поверхности – сферическую форму. На границе соприкосновения трех фаз: жидкость, газ, твердое тело наблюдается явление называемое смачиванием, заключающее в возникновении искривления свободной поверхности жидкости и возникновения мениска. Мерой смачивания является величина cos Θ, где Θ – краевой угол смачивания между смоченной поверхностью твердого тела и мениском в точках их пересечения - периметра смачивания жидкость имеет вогнутый мениск и смачивает твердое тело – гидрофильные поверхности. При Θ > π/2 мениск жидкости выпуклый – гидрофобные поверхности. При Θ → 0 мениск касателенк поверхности тела, условие идеального смачивания. Рис.1.4. Пример гидрофобной и гидрофильной поверхностей На рис.1.5 показано взаиморасположение коэффициентов поверхностного натяжения σ на границах раздела фаз: твердая поверхность – жидкость – газ. Рис.1.5 Жидкость (2) на границе раздела фаз: 1- твердое тело, 3 – газовая среда. Взаиморасположение коэффициентов поверхностного натяжения. Величина дополнительного давления за счет искривления поверхностного слоя при средней кривизне поверхности (закон Лапласа - зависимость перепада гидростатического давления Δp на поверхности раздела двух фаз: жидкость - жидкость, жидкость - газ или пар от межфазного поверхностного натяжения σ и средней кривизны поверхности в рассматриваемой точке): (1.26) где 2σ –удвоенный коэффициент поверхностного натяжения (для газовых пузырей в жидкостях, мыльных пузырей), 1/R1 и 1/R2 –кривизна двух взаимно перпендикулярных, нормальных сечений поверхности в данной точке (подробнее о понятиях: кривизна поверх-ности и радиус кривизны см. Приложение В); Δр = р1-р2 , где р1 – давление с вогнутой стороны поверхности, р2 – давление с выпуклой стороны поверхности. Применение закона Лапласа к поверхности раздела вода - пар в капилляре: Δр = р1 - p2; R1 и R2 - радиусы кривизны в точке О во-гнутой поверхности (R1 = ОА и R2 = ОВ) определяются в двух взаим-но перпендикулярных сечениях ACD и BEF (рис.1.6). Рис.1.6 К определению радиуса кривизны поверхности мениска воды в капилляре Величина избыточного давления для сферических менисков: Δр =2σ/R (1.27) Для цилиндрических менисков: Δр =σ/R (1.28) Капиллярность – свойство жидкости изменять положение её поверхности, вызванное натяжением и силой взаимодействия между нею и стенками узких цилиндрических трубок (1-2 мм в диаметре) или мелкими порами грунта. Капиллярность зависит от температуры, уменьшаясь с ее ростом (рис.1.7). Рис.1.7 Поднятие воды в капилляре Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый мениск - полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жид-кость всасывается в щель до тех пор, пока вес столба жидкости (высотой h) не уравновесит действующее капиллярное давление Δp. В со-стоянии равновесия: (ρ1 -ρ2) gh = Δp = 2σ12/r, (1.29) где ρ1 и ρ2 - плотности жидкости 1 и газа 2. Это выражение, известно как формула Д. Жюрена (J. Jurin, 1684-1750), определяет высоту капиллярного поднятия жидкости h, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности Высота поднятия (смачивающей) или опускания (не смачиваю-щей) жидкости в капилляре, диаметром d, равна (формула Жюрена): (1.30) Вода из всех жидкостей имеет наибольшее значение поверхностное натяжение σ = 0,0726 Н/м. Для воды при температуре 20 0С в трубке диаметром d мм высота капиллярного поднятия выражается формулой: h=30/d, мм.

Пусть жидкость полностью смачивает стенки капилляра. Мениск ее в этом случае имеет форму полусферы (рис. 7.27) радиусом, равным радиусу канала капилляра r . Тогда непосредственно под вогнутым мениском (в точке А) давление жидкости будет меньше атмосферного давления р 0 на величину - (см. § 7.6):

На глубине h , соответствующей уровню жидкости в широком сосуде (в точке В), к этому давлению прибавляется гидростатическое давление ρgh , где ρ - плотность жидкости. В широком сосуде на том же уровне, т. е. непосредственно под плоской поверхностью жидкости (в точке С), давление равно атмосферному давлению р 0 . Так как жидкость находится в равновесии, то давления на одном и том же уровне (в точках В и С) равны. Следовательно,

(7.7.2)

(7.7.3)

Высота поднятия жидкости в капилляре прямо пропорциональна поверхностному натяжению ее и обратно пропорциональна радиусу канала капилляра и плотности жидкости.

Глубина h , на которую опускается в капилляре несмачивающая жидкость, тоже вычисляется по формуле (7.7.3). Это утверждение вы можете проверить самостоятельно.

Формулой (7.7.3) можно воспользоваться для определения поверхностного натяжения а. Для этого необходимо по возможности точнее измерить высоту поднятия жидкости h и радиус канала трубки r . Зная плотность жидкости ρ , поверхностное натяжение а можно найти по формуле:

Это один из наиболее распространенных способов определения поверхностного натяжения.

Капиллярные явления в природе, быту и технике

Чрезвычайно важно для растений движение и сохранение воды в почве. Почва имеет рыхлое строение, и между отдельными частицами ее находятся промежутки. Узкие промежутки представляют собой капилляры. По капиллярным ходам вода поднимается к корневой системе растений и снабжает их необходимой влагой и питательными солями.

По капиллярам находящаяся в почве вода поднимается вверх и интенсивно испаряется (рис. 7.28). Чтобы уменьшить испарение, нужно разрушить капилляры. Это достигается разрыхлением почвы.

Иногда требуется, наоборот, усилить приток влаги по капиллярам. Тогда почву укатывают, увеличивая этим количество капиллярных каналов.

Любопытно, а может ли вода с растворенными в ней веществами подниматься к верхушкам высоких деревьев за счет поверхностного натяжения (высота, например, секвойи более 100 м). Радиус капилляров в древесине от 0,01 до 0,3 мм. Значит, в самых тонких капиллярах вода не поднимается выше 1,5 м. За счет атмосферного давления она может подняться не выше 10 м, даже если на конце трубки создать вакуум. Не может высоко поднять воду и осмотическое давление, благодаря которому давление в растворе больше, чем в чистой жидкости.

Остается единственное предположение: вода в капиллярах находится в растянутом состоянии, но не разрывается из-за притяжения ее молекул. По мере испарения воды с листьев сила притяжения поднимает ее вверх. Прямые измерения показали, что давление в капиллярах древесины действительно отрицательно и может достигать -25 атм.

В быту капиллярные явления используют при самых разнообразных обстоятельствах. Прикладывая промокательную бумагу, удаляют излишек чернил с письма, хлопчатобумажной или льняной тряпкой вытирают мокрые места на столе или на полу. Применение полотенец, салфеток возможно только благодаря наличию в них капилляров. Поднятие керосина или расплавленного стеарина по фитилям ламп и свечей обусловлено наличием в фитилях капиллярных каналов. В технике как один из способов подвода смазки к деталям машин применяют иногда фитильный способ подачи масла.

В строительном деле приходится учитывать подъем влаги из почвы по порам строительных материалов. Из-за этого отсыревают стены зданий. Для защиты фундамента и стен от воздействия грунтовых вод и сырости применяют гидроизоляцию, покрывая фундамент горячим (жидким) битумом или обкладывая водонепроницаемым рулонным материалом (толь или рубероид).

Узких трубок (капилляров) в природе и технике великое множество. В этих трубках жидкость либо поднимается вверх на высоту
, либо опускается вниз на расстояние, определяемое по той же формуле. Многие процессы в природе и технике вызываются этими движениями.

Поверхностный слой жидкости обладает особыми свойствами. Молекулы жидкости в этом слое находятся в непосредственной близости от другой фазы – газа. Молекула, расположенная вблизи границы раздела жидкость – газ, имеет ближайших соседей только с одной стороны, поэтому сложение всех сил, действующих на эту молекулу, дает равнодействующую, направленную внутрь жидкости. Следовательно, любая молекула жидкости, находящаяся вблизи свободной поверхности, имеет избыток потенциальной энергии, по сравнению с молекулами, находящимися внутри.

Для того чтобы перевести молекулу из объема жидкости на поверхность, необходимо совершить работу. При увеличении поверхности определенного объема жидкости внутренняя энергия жидкости увеличивается. Эта составляющая внутренней энергии пропорциональна площади поверхности жидкости и называется поверхностной энергией. Величина поверхностной энергии зависит от сил молекулярного взаимодействия и количества ближайших соседних молекул. Для различных веществ поверхностная энергия принимает разные значения. Энергия поверхностного слоя жидкости пропорциональна его площади: Е= σ ·Ѕ

Величина силы F, действующей на единицу длины границы поверхности, определяет поверхностное натяжение жидкости: σ = F / L ; σ- коэффициент поверхностного натяжения жидкости, Н/м.

Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли у неплотно закрытого крана. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка и капля отрывается. Поверхностный слой воды ведет себя, как растянутая эластичная пленка.

Можно осторожно положить швейную иглу на поверхность воды. Поверхностная пленка прогнется и не даст игле утонуть.


П о этой же причине легкие насекомые – водомерки могут быстро скользить по поверхности воды. Прогиб пленки не позволяет выливаться воде, осторожно налитой в достаточно частое решето.Ткань – это то же решето, образованное переплетением нитей. Поверхностное натяжение сильно затрудняет просачивание воды сквозь нее, и поэтому ткань не промокает мгновенно. Благодаря силам поверхностного натяжения происходит образование пены.

Изменение поверхностного натяжения

При соприкосновении жидкости с твердым телом наблюдается явление смачивания или несмачивания. Если силы взаимодействия между молекулами жидкости и твердого тела больше, чем между молекулами жидкости, то жидкость растекается по поверхности твердого тела, т.е. смачивает и наоборот, если силы взаимодействия между молекулами жидкости больше, чем между молекулами жидкости и твердого тела, то жидкость собирается в каплю и не смачивает поверхность жидкости.

Капиллярные явления.

В природе часто встречаются тела, имеющие пористое строение (пронизаны множеством мелких каналов). Такую структуру имеют бумага, кожа, дерево, почва, многие строительные материалы. Вода или другая жидкость, попадая на такое твердое тело, может впитываться в него, поднимаясь вверх на большую высоту. Так поднимается влага в стеблях растений, керосин поднимается по фитилю, ткань впитывает влагу. Такие явления называются капиллярными.

В узкой цилиндрической трубке смачивающая жидкость за счет сил молекулярного взаимодействия поднимается вверх, принимая вогнутую форму. Под вогнутой поверхностью появляется дополнительное давление, направленное вверх, в связи с чем уровень жидкости в капилляре выше уровня свободной поверхности. Несмачивающая же жидкость принимает выпуклую поверхность. Под выпуклой поверхностью жидкости возникает обратное дополнительное давление, направленное вниз, так что уровень жидкости с выпуклым мениском ниже, чем уровень свободной поверхности.

Величина добавочного давления равна p= 2 σ / R

Жидкость в капилляре поднимается на такую высоту, чтобы давление столба жидкости уравновесило избыточное давление. Высота подъема жидкости в капилляре равна: h = 2 σ / ρgr

Явление смачивания применяют при обогащении руд. Суть обогащения состоит в отделении пустой породы от полезных ископаемых. Этот способ носит название флотации (флотация – всплывание). Раздробленную в мелкий порошок руду взбалтывают в воде, в которую добавлено небольшое количество жидкости, смачивающей полезную руду, например масло. Вдувая в эту смесь воздух, можно отделить обе составляющие. Покрытые пленкой кусочки полезной руды, прилипая к пузырькам воздуха, поднимутся вверх, а порода осядет на дно.

Адсорбция - явление аналогичное смачиванию, наблюдается при соприкосновении твердой и газообразной фаз. Если силы взаимодействия между молекулами твердого тела и газа велики, то тело покрывается слоем молекул газа. Большой адсорбционной способностью обладают пористые вещества. Свойство активированного угля адсорбировать большое количество газа используют в противогазах, в химической промышленности, в медицине.

Значение поверхностного натяжения

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В 1-й половине 19 в. на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во 2-й половине 19 в. Дж. Гиббс развил термодинамическую теорию поверхностных явлений, в которой решающую роль играет поверхностное натяжение. Среди современных актуальных проблем - развитие молекулярной теории поверхностного натяжения различных жидкостей, включая расплавленные металлы. Силы поверхностного натяжения играют существенную роль в явлениях природы, биологии, медицине, в различных современных технологиях, полиграфии, технике, в физиологии нашего организма. Без этих сил мы не могли бы писать чернилами. Обычная ручка не зачерпнула бы чернил из чернильницы, а автоматическая сразу же поставила бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки: пена не образовалась бы. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма. Проявления сил поверхностного натяжения столь многообразны, что даже перечислить их все нет возможности.

В медицине измеряют динамическое и равновесное поверхностное натяжение сыворотки венозной крови, по которым можно диагностировать заболевание и вести контроль над проводимым лечением. Установлено, что вода с низким поверхностным натяжением биологически более доступна. Она легче вступает в молекулярные взаимодействия, тогда клеткам не надо будет тратить энергию на преодоление поверхностного натяжения.

Непрерывно растут объёмы печати на полимерных плёнках благодаря бурному развитию упаковочной индустрии, высокому спросу на потребительские товары в красочной полимерной упаковке. Важное условие грамотного внедрения подобных технологий - точное определение условий их применения в полиграфических процессах. В полиграфии обработка пластика перед печатью необходима для того, чтобы краска ложилась на материал. Причина заключается в поверхностном натяжении материала. Результат определяется тем, как жидкость смачивает поверхность изделия. Смачивание считается оптимальным, когда капля жидкости остается там же, где она была нанесена. В других случаях жидкость может скатываться в каплю, либо, наоборот, растекаться. Оба случая в равной степени приводят к отрицательным результатам во время переноса краски.

Некоторые выводы:

1. Жидкость может смачивать и не смачивать твёрдое тело.
2. Коэффициент поверхностного натяжения зависит от рода жидкости.
3. Коэффициент поверхностного натяжения зависит от температуры.T σ ↓
4. Высота подъёма жидкости в капилляре зависит от его диаметра. d h ↓
5. Сила поверхностного натяжения зависит от длины свободной поверхности жидкости. l F

Среди процессов, которые можно объяснить с помощью поверхностного натяжения и смачивания жидкостей, стоит особо выделить капиллярные явления. Физика - это загадочная и необыкновенная наука, без которой жизнь на Земле была бы невозможна. Давайте рассмотрим наиболее яркий пример этой важной дисциплины.

В жизненной практике такие интересные с точки зрения физики процессы, как капиллярные явления, встречаются весьма часто. Все дело в том, что в повседневной жизни нас окружает много тел, которые легко впитывают в себя жидкость. Причина этому - их пористая структура и элементарные законы физики, а результат - капиллярные явления.

Узкие трубки

Капилляр - это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе - капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу. Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости.

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая - выпуклую.

Смачивание

Это явление, которое происходит на границе, где жидкость соприкасается с твердым телом (другой жидкостью, газами). Оно возникает по причине особого взаимодействия молекул на границе их контакта.

Полное смачивание означает, что капля растекается по поверхности твердого тела, а несмачивание преобразует ее в сферу. На практике чаще всего встречается та или иная степень смачивания, нежели крайние варианты.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, - поверхностное натяжение.

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Р тяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Р тяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

где r - радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

Р тяж = ρπr2hg,

где ρ - плотность жидкости; h - высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Р тяж = F, а это значит, что

ρπr 2 hg = σ2πr,

отсюда высота жидкости в трубке равна:

Точно так же для несмачивающей жидкости:

h - это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

Это несоответствие объясняется направлением лапласовского давления p л:

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением p г столба воды:

а если p л =p г, то можно приравнять и две части уравнения:

Теперь высоту h легко вывести в виде формулы:

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

Тогда искомая высота, имеющая поправку на угол, будет равна:

h=(2σ/pqr)cos Ɵ .

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая - выталкивается вниз.

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой - очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей - ниже.

Важность капиллярных явлений

Без капиллярных явлений существование живых организмов просто невозможно. Именно по мельчайшим сосудам человеческое тело получает кислород и питательные вещества. Корни растений - это сеть капилляров, которая вытягивает влагу из земли, донося ее до самых верхних листьев.

Простая бытовая уборка невозможна без капиллярных явлений, ведь по этому принципу ткань впитывает воду. Полотенце, чернила, фитиль в масляной лампе и множество устройств работает на этой основе. Капиллярные явления в технике играют важную роль при сушке пористых тел и других процессах.

Порой эти же явления дают нежелательные последствия, например, поры кирпича впитывают влагу. Чтобы избежать отсыревания зданий под воздействием грунтовых вод, нужно защитить фундамент с помощью гидроизолирующих материалов - битума, рубероида или толя.

Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена.

Эксперимент с цветами

Примеры капиллярных явлений можно найти в природе, особенно если говорить о растениях. Их стволы имеют внутри множество мелких сосудов. Можно провести эксперимент с окрашиванием цветка в какой-либо яркий цвет в результате капиллярных явлений.

Нужно взять ярко окрашенную воду и белый цветок (или лист пекинской капусты, стебель сельдерея) и поставить в стакан с этой жидкостью. Через какое-то время на листьях пекинской капусты можно наблюдать, как краска продвигается вверх. Цвет растения постепенно изменится соответственно краске, в которую он помещен. Это обусловлено движением субстанции вверх по стеблям согласно тем законам, которые были рассмотрены нами в этой статье.



Рекомендуем почитать

Наверх